scispace - formally typeset
Search or ask a question

Showing papers on "Peptide sequence published in 2022"


Journal ArticleDOI
01 Jan 2022-Cell
TL;DR: In this article , the structure of the spike (S) from Omicron reveals amino acid substitutions forging interactions that stably maintain an active conformation for receptor recognition, which can be used for the development of broad-spectrum vaccines and therapeutics.

253 citations


Journal ArticleDOI
04 Jan 2022-ACS Nano
TL;DR: In this paper , the conformation and aggregation of peptide RSAIEDLLFDKV, which is a sequence common to many animal and human coronavirus spike proteins, was investigated.
Abstract: We demonstrate that a conserved coronavirus spike protein peptide forms amyloid structures, differing from the native helical conformation and not predicted by amyloid aggregation algorithms. We investigate the conformation and aggregation of peptide RSAIEDLLFDKV, which is a sequence common to many animal and human coronavirus spike proteins. This sequence is part of a native α-helical S2 glycoprotein domain, close to and partly spanning the fusion sequence. This peptide aggregates into β-sheet amyloid nanotape structures close to the calculated pI = 4.2, but forms disordered monomers at high and low pH. The β-sheet conformation revealed by FTIR and circular dichroism (CD) spectroscopy leads to peptide nanotape structures, imaged using transmission electron microscopy (TEM) and probed by small-angle X-ray scattering (SAXS). The nanotapes comprise arginine-coated bilayers. A Congo red dye UV–vis assay is used to probe the aggregation of the peptide into amyloid structures, which enabled the determination of a critical aggregation concentration (CAC). This peptide also forms hydrogels under precisely defined conditions of pH and concentration, the rheological properties of which were probed. The observation of amyloid formation by a coronavirus spike has relevance to the stability of the spike protein conformation (or its destabilization via pH change), and the peptide may have potential utility as a functional material. Hydrogels formed by coronavirus peptides may also be of future interest in the development of slow-release systems, among other applications.

15 citations


Posted ContentDOI
09 Feb 2022-bioRxiv
TL;DR: This work proposes a simple yet powerful method for de novo peptide sequencing, Casanovo, that uses a transformer framework to map directly from a sequence of observed peaks (a mass spectrum) to a sequences of amino acids (a peptide).
Abstract: Tandem mass spectrometry is the only high-throughput method for analyzing the protein content of complex biological samples and is thus the primary technology driving the growth of the field of proteomics. A key outstanding challenge in this field involves identifying the sequence of amino acids—the peptide—responsible for generating each observed spectrum, without making use of prior knowledge in the form of a peptide sequence database. Although various machine learning methods have been developed to address this de novo sequencing problem, challenges that arise when modeling tandem mass spectra have led to complex models that combine multiple neural networks and post-processing steps. We propose a simple yet powerful method for de novo peptide sequencing, Casanovo, that uses a transformer framework to map directly from a sequence of observed peaks (a mass spectrum) to a sequence of amino acids (a peptide). Our experiments show that Casanovo achieves state-of-the-art performance on a benchmark dataset using a standard cross-species evaluation framework which involves testing with spectra with never-before-seen peptide labels. Casanovo not only achieves superior performance but does so at a fraction of the model complexity and inference time required by other methods.

12 citations


Journal ArticleDOI
18 Apr 2022-PLOS ONE
TL;DR: It is proposed that a novel cleavage site by CatG of the Omicron variant and the increased substrate turnover of the Delta variant by furin within the polybasic sequence should be considered for increased transmission of SARS-CoV-2 variants.
Abstract: The serine proteases neutrophil elastase (NE), proteinase 3 (PR3), cathepsin G (CatG), and neutrophil serine protease 4 (NSP4) are secreted by activated neutrophils as a part of the innate immune response against invading pathogens. However, these serine proteases might be adopted by viruses to mediate viral surface protein priming resulting in host cell entrance and productive infection. Indeed, NE and PR3 hydrolyze the scissile peptide bond within the proteolytically sensitive polybasic sequence of the activation loop of SARS-CoV-2 located at the S1/S2 interface of the Spike (S) protein; an amino acid motif which differs from SARS-CoV-1. The occurrence of novel SARS-CoV-2 variants and substitution of distinct amino acids at the polybasic sequence prompts serious concerns regarding increased transmissibility. We propose that a novel cleavage site by CatG of the Omicron variant and the increased substrate turnover of the Delta variant by furin within the polybasic sequence should be considered for increased transmission of SARS-CoV-2 variants.

11 citations


Journal ArticleDOI
24 May 2022-PLOS ONE
TL;DR: A matrix of SARS-CoV-2 variant molecular probes are described that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.
Abstract: Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccine-elicited immunity, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring of vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.

11 citations


Journal ArticleDOI
TL;DR: In this paper , the authors report a fast and efficient method to digest AAV5 capsid proteins in only 30 min prior to peptide mapping analysis, using nanoflow liquid chromatography for separation prior to high resolution mass spectrometry.

8 citations


Journal ArticleDOI
TL;DR: In this article, the authors report a fast and efficient method to digest AAV5 capsid proteins in only 30min prior to peptide mapping analysis, using nanoflow liquid chromatography for separation prior to high resolution mass spectrometry.

8 citations


Journal ArticleDOI
TL;DR: In this article , peptide entry inhibitors against the fusion processes of severe acute respiratory syndrome coronavirus-2 (SCV2) and influenza A virus (IAV) were designed and evaluated.
Abstract: In this study, peptide entry inhibitors against the fusion processes of severe acute respiratory syndrome coronavirus-2 (SCV2) and influenza A virus (IAV) were designed and evaluated. Fusion inhibitor peptides targeting the conformational shift of the viral fusion protein were designed based on the relatively conserved sequence of HR2 from SCV2 spike protein and the conserved fusion peptide from hemagglutinin (HA) of IAV. Helical HR2 peptides bind more efficiently to HR1 trimer, while helical amphipathic anti-IAV peptides have higher cell penetration and endosomal uptake. The initial sequences were mutated by increasing the amphipathicity, using helix favoring residues, and residues likely to form salt- and disulfide-bridges. After docking against their targets, all anti-SCV2 designed peptides bonded with the HR1 3-helical bundle's hydrophobic crevice, while AntiSCV2P1, AntiSCV2P3, AntiSCV2P7, and AntiSCV2P8 expected to form coiled coils with at least one of the HR1 strands. Four of the designed anti-IAV peptides were cell-penetrating (AntiIAVP2, AntiIAVP3, AntiIAVP4, AntiIAVP7). All of them interacted with the fusion peptide of HA and some of the residues in the conserved hydrophobic pocket of HA2 in H1N1, H3N1, and H5N1 subtypes of IAV. AntiIAVP3 and AntiIAVP4 peptides had the best binding to HA2 conserved hydrophobic pocket, while, AntiIAVP2 and AntiIAVP6 showed the best binding to the fusion peptide region. According to analyses for in-vivo administration, AntiSCV2P1, AntiSCV2P7, AntiIAVP2, and AntiIAVP7 were the best candidates. AntiSCV2 and AntiIAV peptides were also conjugated using an in vivo cleavable linker sensitive to TMPRSS2 applicable as a single therapeutic in coinfections or uncertain diagnosis.The online version contains supplementary material available at 10.1007/s10989-021-10357-y.

5 citations


Book ChapterDOI
TL;DR: In this paper, a Fab-selective proteolysis method was proposed to limit trypsin access to the antibody substrate by limiting the complementarity-determining regions (CDRs).
Abstract: Monoclonal antibodies bind to Protein A/G resin with 100 nm-diameter pores, which orients the Fab toward the reaction solution. Then, they can be proteolyzed using trypsin immobilized on the surface of 200 nm-diameter nanoparticles. The difference between the two particle diameters allows Fab-selective proteolysis by limiting trypsin access to the antibody substrate. The specific signature peptide of monoclonal antibody is collected, which comprises the complementarity-determining regions (CDRs). Excess trypsin protease and peptide fragments from common sequences in Fc that inhibit the analysis can then be separated and removed. The resulting peptide samples are separated through high performance liquid chromatography on a 20 nm-diameter pore-size reversed-phase C18 column. These are then sequentially ionized with an electrospray interface and subjected to mass spectrometry (MS). In MS, peptide ions are trapped and fragment ions are generated by the collision-induced dissociation with argon gas. These are detected with multiple reaction monitoring measurements to perform a highly sensitive and accurate quantitative analysis.By focusing on various physicochemical features at each analytical scene, such as characteristic structure and orientation of antibody, control of trypsin reaction field, carry-over on HPLC column, ionization suppression effect from endogenous proteins, and detection of amino acid sequence specificity of antibody, we optimized the overall conditions from the sample processing up to MS detection and developed analytical validation and clinical application of many therapeutic antibodies using our Fab-selective proteolysis technology that is based on the structure-indicated approach.

5 citations


Journal ArticleDOI
TL;DR: In this article , the authors characterized a g-type lysozyme from the scallop Argopecten purpuratus named ApGlys, which has a molecular weight of 20.07 kDa and an isoelectric point (pI) of 6.49.

5 citations


Journal ArticleDOI
TL;DR: In this paper , a trimeric peptide HR1MFd was constructed by fusing the trimerization motif foldon to the C terminus of the HR1 peptide.
Abstract: Peptides derived from the SARS-CoV-2 HR1 region are generally poor inhibitors. Here, we constructed a trimeric peptide HR1MFd by fusing the trimerization motif foldon to the C terminus of the HR1 peptide.

Journal ArticleDOI
TL;DR: A way to interpret shotgun proteomics results, specifically in the data-dependent acquisition mode, as protein sequence coverage by multiple reads as it is done in nucleic acid sequencing for calling of single nucleotide variants is proposed.
Abstract: Mass spectrometry-based proteome analysis implies matching the mass spectra of proteolytic peptides to amino acid sequences predicted from genomic sequences. Reliability of peptide variant identification in proteogenomic studies is often lacking. We propose a way to interpret shotgun proteomics results, specifically in the data-dependent acquisition mode, as protein sequence coverage by multiple reads as it is done in nucleic acid sequencing for calling of single nucleotide variants. Multiple reads for each sequence position could be provided by overlapping distinct peptides, thus confirming the presence of certain amino acid residues in the overlapping stretch with a lower false discovery rate. Overlapping distinct peptides originate from miscleaved tryptic peptides in combination with their properly cleaved counterparts and from peptides generated by multiple proteases after the same specimen is subject to parallel digestion and analyzed separately. We illustrate this approach using publicly available multiprotease data sets and our own data generated for the HEK-293 cell line digests obtained using trypsin, LysC, and GluC proteases. Totally, up to 30% of the whole proteome was covered by tryptic peptides with up to 7% covered twofold and more. The proteogenomic analysis of the HEK-293 cell line revealed 36 single amino acid variants, seven of which were supported by multiple reads.

Journal ArticleDOI
31 Aug 2022-Plants
TL;DR: This is the first study exhibiting the expression profiles of the AvPR-1 gene under different stresses in oat, confirming sequence conservation of PR-1 among studied species.
Abstract: Pathogenesis-related protein-1 (PR-1) plays crucial roles in regulating plant responses to biotic and abiotic stresses. This study aimed to isolate and characterize the first PR-1 (AvPR-1) gene in oat (Avena sativa L.). AvPR-1 presented conserved signal peptide motifs and core amino acid composition in the functional protein domains as the protein sequence of AvPR-1 presented 98.28%, 97.7%, and 95.4% identity with known PR1 proteins isolated from Triticum aestivum PRB1-2-like, Triticum dicoccoides PRB1-2-like, and Aegilops tauschii subsp. tauschii, respectively. Bioinformatic analysis showed that the AvPR-1 protein belongs to the CAP superfamily (PF00188). Secondary and 3D structure analyses of the AvPR-1 protein were also conducted, confirming sequence conservation of PR-1 among studied species. The AvPR-1 protein harbors a calmodulin-binding domain located in its C-terminal part as previously shown for its wheat homolog TdPR1.2. Moreover, gene expression analysis showed that AvPR-1 was induced in response to many abiotic and hormonal stresses especially in leaves after treatment for 48 h. This is the first study exhibiting the expression profiles of the AvPR-1 gene under different stresses in oat.

Journal ArticleDOI
TL;DR: The identification of unknown proteins continues to be a challenge despite major advances in MS instrumentation and bioinformatic tools and the need for de novo MS sequencing will decrease, but the combination of MS and Edman sequencing will continue to be of importance.
Abstract: (1) Background: The amino acid sequence elucidation of peptides from the gas phase fragmentation mass spectra, de novo sequencing, is a valuable method for the identification of unknown proteins complementary to Edman sequencing. It is increasingly used in shot-gun mass spectrometry (MS)-based proteomics experiments. We review the current state-of-the-art and use the identification of an unknown snake venom protein targeting the human tissue factor (TF) as an example to describe the analysis process based on manual spectrum interrogation. (2) Methods: The immobilized TF was incubated with a crude B. moojeni venom solution. The potential binding partners were eluted and further purified by gel electrophoresis. Edman degradation was performed to elucidate the N-terminus of the 31 kDa protein of interest. High-resolution MS with collision-induced dissociation was employed to generate peptide fragmentation spectra. Sequence tags were deduced and used for searches in the NCBI and Uniprot databases. Protein matches from the snake species were further validated by target MS/MS. (3) Results: Sequence tag D [K/Q] D [I/L] VDD [K/Q] led to a snake venom serine protease (SVSP) from lancehead B. jararaca (P81824). With target MS/MS, 24% of the SVSP sequence were confirmed; an additional 41% were tentatively assigned by data-independent MS. Edman sequencing provided information for 10 N-terminal amino acid residues, also confirming the match to SVSP. (4) Conclusions: The identification of unknown proteins continues to be a challenge despite major advances in MS instrumentation and bioinformatic tools. The main requirement is the generation of meaningful, high-quality MS peptide fragmentation spectra. These are used to elucidate sufficiently long sequence tags, which can subsequently be submitted to searches in protein databases. This basic method does not require extensive bioinformatics because peptide MS/MS spectra, especially of doubly-charged ions, can be analysed manually. We demonstrated the procedure with the elucidation of SVSP. While de novo sequencing quickly indicates the correct protein group, the validation of the entire protein sequence of amino acid-by-amino acid will take time. Reasons are the need to properly assign isobaric amino acid residues and modifications. With the ongoing efforts in genomics and transcriptomics and the availability of ever more data in public databases, the need for de novo MS sequencing will decrease. Still, not every animal and plant species will be sequenced, so the combination of MS and Edman sequencing will continue to be of importance for the identification of unknown proteins.

Journal ArticleDOI
TL;DR: It is demonstrated that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties, suggesting that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.
Abstract: The evolutionary benefit accounting for widespread conservation of oligomeric structures in proteins lacking evidence of intersubunit cooperativity remains unclear. Here, crystal and cryo‐EM structures, and enzymological data, demonstrate that a conserved tetramer interface maintains the active‐site structure in one such class of proteins, the short‐chain dehydrogenase/reductase (SDR) superfamily. Phylogenetic comparisons support a significantly longer polypeptide being required to maintain an equivalent active‐site structure in the context of a single subunit. Oligomerization therefore enhances evolutionary fitness by reducing the metabolic cost of enzyme biosynthesis. The large surface area of the structure‐stabilizing oligomeric interface yields a synergistic gain in fitness by increasing tolerance to activity‐enhancing yet destabilizing mutations. We demonstrate that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties. This suggests that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.

Journal ArticleDOI
TL;DR: The findings on the structural and molecular properties of Aspergillus flavus lipase in this work will be crucial in future studies aiming at engineering the enzyme for biotechnology applications.
Abstract: Abstract Lipases are enzymes of industrial importance responsible for the hydrolysis of ester bonds of triglycerides. A lipolytic fungus was isolated and subsequently identified based on the ITS sequence analysis as putative Aspergillus flavus with accession number LC424503. The gene coding for extracellular triacylglycerol lipase was isolated from Aspergillus flavus species, sequenced, and characterised using bioinformatics tools. An open reading frame of 420 amino acid sequence was obtained and designated as Aspergillus flavus lipase (AFL) sequence. Alignment of the amino acid sequence with other lipases revealed the presence GHSLG sequence which is the lipase consensus sequence Gly-X1-Ser-X2-Gly indicating that it a classical lipase. A catalytic active site lid domain composed of TYITDTIIDLS amino acids sequence was also revealed. This lid protects the active site, control the catalytic activity and substrate selectivity in lipases. The 3-Dimensional structural model shared 34.08% sequence identity with a lipase from Yarrowia lipolytica covering 272 amino acid residues of the template model. A search of the lipase engineering database using AFL sequence revealed that it belongs to the class GX-lipase, superfamily abH23 and homologous family abH23.02, molecular weight and isoelectric point values of 46.95 KDa and 5.7, respectively. N-glycosylation sites were predicted at residues 164, 236 and 333, with potentials of 0.7250, 0.7037 and 0.7048, respectively. O-glycosylation sites were predicted at residues 355, 358, 360 and 366. A signal sequence of 37 amino acids was revealed at the N-terminal of the polypeptide. This is a short peptide sequence that marks a protein for transport across the cell membrane and indicates that AFL is an extracellular lipase. The findings on the structural and molecular properties of Aspergillus flavus lipase in this work will be crucial in future studies aiming at engineering the enzyme for biotechnology applications. Communicated by Ramaswamy H. Sarma

Journal ArticleDOI
TL;DR: Bacterial and fungal large-size subunit catalases (LSCs) might have originated by fusion of SSC and Hsp31 encoding genes during early bacterial diversification, conferring at the same time great stability and molecular chaperone activity to the novel catalase activity.
Abstract: Bacterial and fungal large-size subunit catalases (LSCs) are like small-size subunit catalases (SSCs) but have an additional C-terminal domain (CT). The catalytic domain is conserved at both primary sequence and structural levels and its amino acid composition is optimized to select H2O2 over water. The CT is structurally conserved, has an amino acid composition similar to very stable proteins, confers high stability to LSCs, and has independent molecular chaperone activity. While heat and denaturing agents increased Neurospora crassa catalase-1 (CAT-1) activity, a CAT-1 version lacking the CT (C63) was no longer activated by these agents. The addition of catalase-3 (CAT-3) CT to the CAT-1 or CAT-3 catalase domains prevented their heat denaturation in vitro. Protein structural alignments indicated CT similarity with members of the DJ-1/PfpI superfamily and the CT dimers present in LSCs constitute a new type of symmetric dimer within this superfamily. However, only the bacterial Hsp31 proteins show sequence similarity to the bacterial and fungal catalase mobile coil (MC) and are phylogenetically related to MC_CT sequences. LSCs might have originated by fusion of SSC and Hsp31 encoding genes during early bacterial diversification, conferring at the same time great stability and molecular chaperone activity to the novel catalases.

Journal ArticleDOI
TL;DR: This work compared how evolution diversified a periplasmic peptidyl-prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin and defined at near-residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates.
Abstract: Secretory preproteins of the Sec pathway are targeted post‐translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non‐folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further. We sought the structural basis for delayed mature domain folding and how signal peptides regulate it. We compared how evolution diversified a periplasmic peptidyl‐prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin. Global and local hydrogen–deuterium exchange mass spectrometry showed that PpiA is a slower folder. We defined at near‐residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates. PpiA folding is delayed by less hydrophobic native contacts, frustrated residues and a β‐turn in the earliest foldon and by signal peptide‐mediated disruption of foldon hierarchy. When selected PpiA residues and/or its signal peptide were grafted onto PpiB, they converted it into a slow folder with enhanced in vivo secretion. These structural adaptations in a secretory protein facilitate trafficking.

Journal ArticleDOI
TL;DR: In this paper , the authors identified and characterized hepcidin gene from the fish, Catla catla (Indian major carp) and termed it as Cc-Hep.

Journal ArticleDOI
TL;DR: In this article , the amino acid sequence encoding a smaller fold is embedded in the structure of an ~50% larger fold and a new sequence compatible with two sets of native interactions is designed.
Abstract: To better understand how amino acid sequence encodes protein structure, we engineered mutational pathways that connect three common folds (3α, β-grasp, and α/β-plait). The structures of proteins at high sequence-identity intersections in the pathways (nodes) were determined using NMR spectroscopy and analyzed for stability and function. To generate nodes, the amino acid sequence encoding a smaller fold is embedded in the structure of an ~50% larger fold and a new sequence compatible with two sets of native interactions is designed. This generates protein pairs with a 3α or β-grasp fold in the smaller form but an α/β-plait fold in the larger form. Further, embedding smaller antagonistic folds creates critical states in the larger folds such that single amino acid substitutions can switch both their fold and function. The results help explain the underlying ambiguity in the protein folding code and show that new protein structures can evolve via abrupt fold switching.

Journal ArticleDOI
TL;DR: In this article , peptide entry inhibitors against the fusion processes of severe acute respiratory syndrome coronavirus-2 (SCV2) and influenza A virus (IAV) were designed and evaluated.
Abstract: In this study, peptide entry inhibitors against the fusion processes of severe acute respiratory syndrome coronavirus-2 (SCV2) and influenza A virus (IAV) were designed and evaluated. Fusion inhibitor peptides targeting the conformational shift of the viral fusion protein were designed based on the relatively conserved sequence of HR2 from SCV2 spike protein and the conserved fusion peptide from hemagglutinin (HA) of IAV. Helical HR2 peptides bind more efficiently to HR1 trimer, while helical amphipathic anti-IAV peptides have higher cell penetration and endosomal uptake. The initial sequences were mutated by increasing the amphipathicity, using helix favoring residues, and residues likely to form salt- and disulfide-bridges. After docking against their targets, all anti-SCV2 designed peptides bonded with the HR1 3-helical bundle's hydrophobic crevice, while AntiSCV2P1, AntiSCV2P3, AntiSCV2P7, and AntiSCV2P8 expected to form coiled coils with at least one of the HR1 strands. Four of the designed anti-IAV peptides were cell-penetrating (AntiIAVP2, AntiIAVP3, AntiIAVP4, AntiIAVP7). All of them interacted with the fusion peptide of HA and some of the residues in the conserved hydrophobic pocket of HA2 in H1N1, H3N1, and H5N1 subtypes of IAV. AntiIAVP3 and AntiIAVP4 peptides had the best binding to HA2 conserved hydrophobic pocket, while, AntiIAVP2 and AntiIAVP6 showed the best binding to the fusion peptide region. According to analyses for in-vivo administration, AntiSCV2P1, AntiSCV2P7, AntiIAVP2, and AntiIAVP7 were the best candidates. AntiSCV2 and AntiIAV peptides were also conjugated using an in vivo cleavable linker sensitive to TMPRSS2 applicable as a single therapeutic in coinfections or uncertain diagnosis.The online version contains supplementary material available at 10.1007/s10989-021-10357-y.

Journal ArticleDOI
TL;DR: In this article , a combination of molecular cloning and mass spectrometry was used to identify three new peptide families, named Picturins, Pictuseptins, and Boanins, from Boana picturata skin secretion.

Journal ArticleDOI
TL;DR: The presence of linear amino acid motifs with the capacity to recognize neutral lipid cholesterol, known as Cholesterol Recognition/interaction Amino acid Consensus sequence (CRAC), and its inverse or mirror image, CARC, has recently been reported in the primary sequence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike S homotrimeric glycoprotein this article .

Journal ArticleDOI
28 Mar 2022-PLOS ONE
TL;DR: In this article , the authors used an end-to-end learning methodology relying on deep sequence to sequence architecture to generate the antigenic variant of a given influenza A virus using surface protein.
Abstract: The growing risk of new variants of the influenza A virus is the most significant to public health. The risk imposed from new variants may have been lethal, as witnessed in the year 2009. Even though the improvement in predicting antigenicity of influenza viruses has rapidly progressed, few studies employed deep learning methodologies. The most recent literature mostly relied on classification techniques, while a model that generates the HA protein of the antigenic variant is not developed. However, the antigenic pair of influenza virus A can be determined in a laboratory setup, the process needs a tremendous amount of time and labor. Antigenic shift and drift which are caused by changes in surface protein favored the influenza A virus in evading immunity. The high frequency of the minor changes in the surface protein poses a challenge to identifying the antigenic variant of an emerging virus. These changes slow down vaccine selection and the manufacturing process. In this vein, the proposed model could help save the time and efforts exerted to identify the antigenic pair of the influenza virus. The proposed model utilized an end-to-end learning methodology relying on deep sequence-to-sequence architecture to generate the antigenic variant of a given influenza A virus using surface protein. Employing the BLEU score to evaluate the generated HA protein of the antigenic variant of influenza virus A against the actual variant, the proposed model achieved a mean accuracy of 97.57%.

Journal ArticleDOI
TL;DR: The identification and description of disorders with a shared mechanism of disease may provide further insights into the disease process and assist with the identification of potential therapeutics.
Abstract: Human mitochondrial disorders impact tissues with high energetic demands and can be associated with cardiac muscle disease (cardiomyopathy) and early mortality. However, the mechanistic link between mitochondrial disease and the development of cardiomyopathy is frequently unclear. In addition, there is often marked phenotypic heterogeneity between patients, even between those with the same genetic variant, which is also not well understood. Several of the mitochondrial cardiomyopathies are related to defects in the maintenance of mitochondrial protein homeostasis, or proteostasis. This essential process involves the importing, sorting, folding and degradation of preproteins into fully functional mature structures inside mitochondria. Disrupted mitochondrial proteostasis interferes with mitochondrial energetics and ATP production, which can directly impact cardiac function. An inability to maintain proteostasis can result in mitochondrial dysfunction and subsequent mitophagy or even apoptosis. We review the known mitochondrial diseases that have been associated with cardiomyopathy and which arise from mutations in genes that are important for mitochondrial proteostasis. Genes discussed include DnaJ heat shock protein family member C19 (DNAJC19), mitochondrial import inner membrane translocase subunit TIM16 (MAGMAS), translocase of the inner mitochondrial membrane 50 (TIMM50), mitochondrial intermediate peptidase (MIPEP), X-prolyl-aminopeptidase 3 (XPNPEP3), HtraA serine peptidase 2 (HTRA2), caseinolytic mitochondrial peptidase chaperone subunit B (CLPB) and heat shock 60-kD protein 1 (HSPD1). The identification and description of disorders with a shared mechanism of disease may provide further insights into the disease process and assist with the identification of potential therapeutics.

Journal ArticleDOI
TL;DR: In this paper , the authors determined the crystal structure of an FMDV 2C fragment to 1.83 Å resolution, which comprises an ATPase domain, a region equivalent to the enterovirus 2C zinc-finger (ZFER), and a C-terminal domain harboring a loop (PBL) that occupies a hydrophobic cleft (Pocket) in an adjacent 2C molecule.

Journal ArticleDOI
TL;DR: The authors showed that 6-aminoquinoline-N-hydroxysuccimidyl carbamate (AQC) as an N-blocking group greatly enhances substrate hydrolysis with carboxypeptidase.

Journal ArticleDOI
TL;DR: This study paves a way to explore the antibacterial peptide from a novel species, L. maxima (MZ26519) evident to utilize for the novel drug to overcome the conventional approach.

Journal ArticleDOI
05 Jan 2022-Langmuir
TL;DR: Why peptides composed of repeating hydrophobic and charged residues could be a potential choice for delivering therapeutic proteins in the form of solution is revealed.
Abstract: Peptide-based biomaterials exhibit great potentials in developing drug delivery platforms due to their biocompatibility and biodegradability beyond poly(ethylene glycol). How different amino acids in peptides used for delivery play their roles is still unclear at the microscopic level. This work compared the assembly behaviors of a series of peptides around interferon-α (IFN-α). Through all-atom molecular simulations, the sequence effect of peptides on delivering interferon-α was quantitively characterized. The hydrophobic elastin-like peptide (VPGAG)n preferred to self-aggregate into dense clusters, rather than encapsulate IFN-α. The hydrophilic zwitterionic peptides with repeating unit "KE" tended to phase-separate from IFN-α in the mixture. In contrast, peptides with a hybrid sequence, i.e., (VPKEG)n, exhibited the highest contact preference, and the formed protective shell endowed IFN-α with better thermal stability and stealth property and achieved a subtle balance between protecting IFN-α and subsequent releasing. Further energy decomposition analysis revealed that the positively charged Lys contributed most to the binding affinity while the negatively charged Glu contributed most to the hydrophilic property of peptide-based materials. In summary, this article reveals why peptides composed of repeating hydrophobic and charged residues could be a potential choice for delivering therapeutic proteins in the form of solution.

Journal ArticleDOI
TL;DR: The role of the mature region amino acid residues in both the efficiency and the ability of secreted proteins to be successfully exported via secretion pathways and cleaved by signal peptidase I is discussed in this paper .
Abstract: Secreted proteins contain an N-terminal signal peptide to guide them through the secretion pathway. Once the protein is translocated, the signal peptide is removed by a signal peptidase, such as signal peptidase I. The signal peptide has been extensively studied and reviewed; however, the mature region has not been the focus of review. Here we cover the experimental evidence that highlights the important role of the mature region amino acid residues in both the efficiency and the ability of secreted proteins to be successfully exported via secretion pathways and cleaved by signal peptidase I.