scispace - formally typeset
Search or ask a question
Topic

Perforant Pathway

About: Perforant Pathway is a research topic. Over the lifetime, 616 publications have been published within this topic receiving 43292 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The after‐effects of repetitive stimulation of the perforant path fibres to the dentate area of the hippocampal formation have been examined with extracellular micro‐electrodes in rabbits anaesthetized with urethane.
Abstract: 1. The after-effects of repetitive stimulation of the perforant path fibres to the dentate area of the hippocampal formation have been examined with extracellular micro-electrodes in rabbits anaesthetized with urethane.2. In fifteen out of eighteen rabbits the population response recorded from granule cells in the dentate area to single perforant path volleys was potentiated for periods ranging from 30 min to 10 hr after one or more conditioning trains at 10-20/sec for 10-15 sec, or 100/sec for 3-4 sec.3. The population response was analysed in terms of three parameters: the amplitude of the population excitatory post-synaptic potential (e.p.s.p.), signalling the depolarization of the granule cells, and the amplitude and latency of the population spike, signalling the discharge of the granule cells.4. All three parameters were potentiated in 29% of the experiments; in other experiments in which long term changes occurred, potentiation was confined to one or two of the three parameters. A reduction in the latency of the population spike was the commonest sign of potentiation, occurring in 57% of all experiments. The amplitude of the population e.p.s.p. was increased in 43%, and of the population spike in 40%, of all experiments.5. During conditioning at 10-20/sec there was massive potentiation of the population spike (;frequency potentiation'). The spike was suppressed during stimulation at 100/sec. Both frequencies produced long-term potentiation.6. The results suggest that two independent mechanisms are responsible for long-lasting potentiation: (a) an increase in the efficiency of synaptic transmission at the perforant path synapses; (b) an increase in the excitability of the granule cell population.

7,008 citations

Journal ArticleDOI
06 Jul 2007-Science
TL;DR: Evidence is provided that NMDA receptors in the granule cells of the dentate gyrus play a crucial role in the process of pattern separation, by generating and analyzing a mouse strain that lacks the gene encoding the essential subunit of the N-methyl-d-aspartate (NMDA) receptor NR1 in dentates gyrus granule Cells.
Abstract: Forming distinct representations of multiple contexts, places, and episodes is a crucial function of the hippocampus. The dentate gyrus subregion has been suggested to fulfill this role. We have tested this hypothesis by generating and analyzing a mouse strain that lacks the gene encoding the essential subunit of the N-methyl-d-aspartate (NMDA) receptor NR1, specifically in dentate gyrus granule cells. The mutant mice performed normally in contextual fear conditioning, but were impaired in the ability to distinguish two similar contexts. A significant reduction in the context-specific modulation of firing rate was observed in the CA3 pyramidal cells when the mutant mice were transferred from one context to another. These results provide evidence that NMDA receptors in the granule cells of the dentate gyrus play a crucial role in the process of pattern separation.

900 citations

Journal ArticleDOI
01 Feb 2012-PLOS ONE
TL;DR: The mouse recapitulates the tauopathy that defines the early stages of AD and provides a model for testing mechanisms and functional outcomes associated with disease progression and support a trans-synaptic mechanism of spread along anatomically connected networks, between connected and vulnerable neurons.
Abstract: Tauopathy in the brain of patients with Alzheimer's disease starts in the entorhinal cortex (EC) and spreads anatomically in a defined pattern. To test whether pathology initiating in the EC spreads through the brain along synaptically connected circuits, we have generated a transgenic mouse model that differentially expresses pathological human tau in the EC and we have examined the distribution of tau pathology at different timepoints. In relatively young mice (10–11 months old), human tau was present in some cell bodies, but it was mostly observed in axons within the superficial layers of the medial and lateral EC, and at the terminal zones of the perforant pathway. In old mice (>22 months old), intense human tau immunoreactivity was readily detected not only in neurons in the superficial layers of the EC, but also in the subiculum, a substantial number of hippocampal pyramidal neurons especially in CA1, and in dentate gyrus granule cells. Scattered immunoreactive neurons were also seen in the deeper layers of the EC and in perirhinal and secondary somatosensory cortex. Immunoreactivity with the conformation-specific tau antibody MC1 correlated with the accumulation of argyrophilic material seen in old, but not young mice. In old mice, axonal human tau immunoreactivity, especially at the endzones of the perforant pathway, was greatly reduced. Relocalization of tau from axons to somatodendritic compartments and propagation of tauopathy to regions outside of the EC correlated with mature tangle formation in neurons in the EC as revealed by thioflavin-S staining. Our data demonstrate propagation of pathology from the EC and support a trans-synaptic mechanism of spread along anatomically connected networks, between connected and vulnerable neurons. In general, the mouse recapitulates the tauopathy that defines the early stages of AD and provides a model for testing mechanisms and functional outcomes associated with disease progression.

896 citations

Journal ArticleDOI
TL;DR: The present study re‐examines, with autoradiographic methods, the pattern of termination of fibers originating from various medio‐lateral divisions of the entorhinal cortex on dentate granule cells and on hippocampa pyramidal cells of the rat.
Abstract: The present study re-examines, with autoradiographic methods, the pattern of termination of fibers originating from various medio-lateral divisions of the entorhinal cortex on dentate granule cells and on hippocampal pyramidal cells of the rat. Entorhinal fibers were found to distribute in a proximo-distal gradient along the dendrites of dentate granule cells, with afferents from the medial entorhinal area terminating in the innermost portion of the entorhinal synaptic field, afferents from the lateral entorhinal area terminating in the most superficial portions of the entorhinal synaptic field, and intermediate medio-lateral locations in the entorhinal area terminating in intermediate locations in the entorhinal synaptic zone. A similar graded pattern of termination of medial and lateral entorhinal fibers was apparent in the very slight crossed projection of the entorhinal area to the contralateral dentate gyrus. In addition, a comparable gradient in the pattern of termination of entorhinal fibers was evident in the entorhinal projection field in the distal regions of the pyramidal cells of regio inferior of the hippocampus proper. Entorhinal projections to regio superior were, however, organized in quite a different fashion. In this zone, there was no evidence of a proximo-distal gradient in the patterns of termination of medial and lateral entorhinal areas along the dendrites of regio superior pyramidal cells. Rather, the medio-lateral organization was in a longitudinal dimension, with medial entorhinal afferents terminating in the portions of regio superior near the CA1-CA2 transition, and lateral entorhinal afferents terminating furthest from the CA1-CA2 transition, immediately adjacent to the CA1-subicular transition, and in the molecular layer of the subiculum proper. A comparable longitudinal organization of entorhinal projections to regio superior was also evident in the zones of termination of the crossed temporo-ammonic tract, contralateral to the injection. These results demonstrate a heretofore unrecognized complexity in the patterns of projection of the entorhinal area to the hippocampal formation, and illustrate that the entorhinal cortex cannot be divided into only two discrete divisions on the basis of the pattern of projection.

889 citations

Journal ArticleDOI
TL;DR: The pathway from the entorhinal cortical region to the hippocampal formation has previously been shown to be comprised of two sub‐systems, one of which projects predominantly to the ipsilateral fascia dentata and regio inferior of the hippocampus proper, and a second which projects bilaterally to regio superior.
Abstract: The pathway from the entorhinal cortical region to the hippocampal formation has previously been shown to be comprised of two sub-systems, one of which projects predominantly to the ipsilateral fascia dentata and regio inferior of the hippocampus proper, and a second which projects bilaterally to regio superior. The goal of the present investigation was to determine if these two pathways might originate from different cell populations within the entorhinal area. The cells of origin of these entorhinal pathways were identified by retrograde labeling with horseradish peroxidase (HRP). Injections which labeled the entorhinal terminal fields in both the fascia dentata and regio superior resulted in the retrograde labeling of two populations of cells in the entorhinal area. Ipsilateral to the injection, HRP reaction product was found in the cells of layer II (predominantly stellate cells) and the cells of layer III (predominantly pyramidal cells). Contralateral to the injections, however, the reaction product was found almost exclusively in the cells of layer III. With selective injections of the entorhinal terminal field in regio superior, only the cells of layer III were labeled, but these were labeled bilaterally. Selective injection of the entorhinal terminal field in the fascia dentata, however, resulted in the labeling of cells of layer II, but not of layer III, and these cells of layer II were labeled almost exclusively ipsilaterally. A very small number of labeled cells in layer II were, however, found contralateral to the injection as well. No labeled cells were found either in the presubiculum or parasubiculum following injections of the hippocampal formation. These cell populations were found capable of retrograde transport of HRP, however, since cells in both presubiculum and parasubiculum were labeled following HRP injections into the contralateral entorhinal area. These results suggest that the projections to the fascia dentata originate from the cells of layer II, while the projections to regio superior originate from the cells of layer III of the entorhinal region proper. The very slight crossed projection from the entorhinal area to the contralateral area dentata probably originates from the small population of cells in layer II which are labeled following HRP injections in the contralateral area dentata.

851 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
90% related
Hippocampal formation
30.6K papers, 1.7M citations
89% related
Synaptic plasticity
19.3K papers, 1.3M citations
89% related
Glutamate receptor
33.5K papers, 1.8M citations
87% related
Dopaminergic
29K papers, 1.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202215
202111
20202
20195
20186