scispace - formally typeset
Search or ask a question
Topic

Perfusion scanning

About: Perfusion scanning is a research topic. Over the lifetime, 9496 publications have been published within this topic receiving 223860 citations. The topic is also known as: perfusion imaging.


Papers
More filters
Journal ArticleDOI
Yuan Li1, Zhi-gang Yang1, Tian-wu Chen1, Hui-jiao Chen1, Jia-yu Sun1, Yan-rong Lu1 
TL;DR: 64-detector row CT first-pass perfusion imaging is a valuable noninvasive method in evaluating tumor perfusion of peripheral lung carcinoma and CT perfusion parameters can be indicators for evaluating tumor necrosis and angiogenesis.

93 citations

Journal ArticleDOI
TL;DR: This research highlights the need to understand more fully the role of Epstein-Barr virus in the development of central giant cell granuloma, which is a leading cause of cancer-related death in women.
Abstract: The purpose of this guideline is to assist nuclear medicine practitioners in recommending, performing, interpreting, and reporting the results of myocardial perfusion imaging studies. Myocardial perfusion imaging uses an intravenously administered radiopharmaceutical to depict the distribution of

92 citations

Journal ArticleDOI
TL;DR: In vivo evaluation of in vivo correlation of PCT parameters such as CBV and PS with histologic and molecular angiogenic markers in gliomas suggests that these 2 perfusion parameters represent different aspects of tumor vessels; hence, in vivo evaluated of these could be important in a better understanding of tumor angiogenesis.
Abstract: BACKGROUND AND PURPOSE: Tumor angiogenesis is very heterogeneous and in vivo correlation of perfusion imaging parameters with angiogenic markers can help in better understanding the role of perfusion imaging as an imaging biomarker. The purpose of this study was to correlate PCT parameters such as CBV and PS with histologic and molecular angiogenic markers in gliomas. MATERIALS AND METHODS: Thirty-six image-guided biopsy specimens in 23 patients with treatment-naive gliomas underwent PCT examinations. We correlated MVD, MVCP, VEGFR-2 expression, tumor cellularity, and WHO grade of the image-guided biopsy specimens with the PCT parameters. Histologic sections were stained with hematoxylin-eosin, CD34, and VEGFR-2 and examined under a light microscope. These histologic and molecular angiogenic markers were correlated with perfusion parameters of the region of interest corresponding to the biopsy specimen. Pearson correlation coefficients and multiple regression analyses by using clustering methods were performed to assess these correlations. RESULTS: CBV showed a significant positive correlation with MVD ( r = 0.596, P r = 0.546, P = .001). Both CBV ( r = 0.373, P = .031) and PS ( r = 0.452, P = .039) also showed a significant correlation with WHO grade. VEGFR-2 positive specimens showed higher PS and CBV; however, neither was statistically significant at the .05 level. CONCLUSIONS: CBV showed a significant positive correlation with MVD, whereas PS showed a significant positive correlation with MVCP, suggesting that these 2 perfusion parameters represent different aspects of tumor vessels; hence, in vivo evaluation of these could be important in a better understanding of tumor angiogenesis.

92 citations

Journal ArticleDOI
TL;DR: Dual-modality simultaneous imaging or multimodal sequential imaging techniques facilitate integration of information on both myocardial perfusion and coronary anatomy, and thus have the potential to improve diagnostic and prognostic evaluation, which could translate into improved care of patients.
Abstract: Advances in cardiovascular imaging have resulted in the development of multiple noninvasive techniques to evaluate myocardial perfusion and coronary anatomy, each of which has unique strengths and limitations. For example, CT angiography can directly visualize the presence of atherosclerosis, but the hemodynamic effect of many lesions identified by this technique is unknown. Alternatively, myocardial perfusion imaging enables a physiological assessment, but it may underestimate the extent of atherosclerosis in patients with multivessel disease. Dual-modality simultaneous imaging or multimodal sequential imaging techniques facilitate integration of information on both myocardial perfusion and coronary anatomy, and thus have the potential to improve diagnostic and prognostic evaluation, which could translate into improved care of patients. This Review discusses the strengths and limitations of the currently available individual noninvasive techniques for imaging coronary anatomy and myocardial perfusion. Approaches to integration of these imaging modalities are described, followed by an exploration of the clinical utility and future directions of hybrid imaging.

92 citations

Journal ArticleDOI
TL;DR: The first high-contrast in vivo MPI lung perfusion images of rats are shown using a novel lung perfusions agent, MAA-SPIOs, enabling deep imaging of anatomy including within the lungs, which is very challenging with MRI.
Abstract: Pulmonary embolism (PE), along with the closely related condition of deep vein thrombosis, affect an estimated 600 000 patients in the US per year. Untreated, PE carries a mortality rate of 30%. Because many patients experience mild or non-specific symptoms, imaging studies are necessary for definitive diagnosis of PE. Iodinated CT pulmonary angiography is recommended for most patients, while nuclear medicine-based ventilation/perfusion (V/Q) scans are reserved for patients in whom the use of iodine is contraindicated. Magnetic particle imaging (MPI) is an emerging tracer imaging modality with high image contrast (no tissue background signal) and sensitivity to superparamagnetic iron oxide (SPIO) tracer. Importantly, unlike CT or nuclear medicine, MPI uses no ionizing radiation. Further, MPI is not derived from magnetic resonance imaging (MRI); MPI directly images SPIO tracers via their strong electronic magnetization, enabling deep imaging of anatomy including within the lungs, which is very challenging with MRI. Here, the first high-contrast in vivo MPI lung perfusion images of rats are shown using a novel lung perfusion agent, MAA-SPIOs.

92 citations


Network Information
Related Topics (5)
Magnetic resonance imaging
61K papers, 1.5M citations
88% related
Ejection fraction
47.6K papers, 1.6M citations
82% related
Coronary artery disease
77.6K papers, 2.2M citations
81% related
Ischemia
53.6K papers, 1.9M citations
80% related
Stroke
112.7K papers, 3.7M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022372
2021394
2020362
2019407
2018336