scispace - formally typeset
Search or ask a question
Topic

Perfusion scanning

About: Perfusion scanning is a research topic. Over the lifetime, 9496 publications have been published within this topic receiving 223860 citations. The topic is also known as: perfusion imaging.


Papers
More filters
Journal ArticleDOI
TL;DR: The present study demonstrates the relative safety of intramyocardial injections of bone marrow–derived stem cells in humans with severe heart failure and the potential for improving myocardial blood flow with associated enhancement of regional and global left ventricular function.
Abstract: Background— This study evaluated the hypothesis that transendocardial injections of autologous mononuclear bone marrow cells in patients with end-stage ischemic heart disease could safely promote neovascularization and improve perfusion and myocardial contractility. Methods and Results— Twenty-one patients were enrolled in this prospective, nonrandomized, open-label study (first 14 patients, treatment; last 7 patients, control). Baseline evaluations included complete clinical and laboratory evaluations, exercise stress (ramp treadmill), 2D Doppler echocardiogram, single-photon emission computed tomography perfusion scan, and 24-hour Holter monitoring. Bone marrow mononuclear cells were harvested, isolated, washed, and resuspended in saline for injection by NOGA catheter (15 injections of 0.2 cc). Electromechanical mapping was used to identify viable myocardium (unipolar voltage ≥6.9 mV) for treatment. Treated and control patients underwent 2-month noninvasive follow-up, and treated patients alone underwen...

1,375 citations

Journal ArticleDOI
TL;DR: In this paper, contrast-enhanced cardiovascular magnetic resonance (CMR) and single photon emission computed tomography (SPECT) myocardial perfusion imaging was used to detect sub-endocardial infarcts that are missed by SPECT.

1,277 citations

Journal ArticleDOI
TL;DR: A strong association between myocardial viability on noninvasive testing and improved survival after revascularization in patients with chronic CAD and LV dysfunction is demonstrated.

1,257 citations

Journal ArticleDOI
TL;DR: For stroke patients treated 3 to 6 hours after onset, baseline MRI findings can identify subgroups that are likely to benefit from reperfusion therapies and can potentially identify sub groups that are unlikely to benefit or may be harmed.
Abstract: Objective To determine whether prespecified baseline magnetic resonance imaging (MRI) profiles can identify stroke patients who have a robust clinical response after early reperfusion when treated 3 to 6 hours after symptom onset. Methods We conducted a prospective, multicenter study of 74 consecutive stroke patients admitted to academic stroke centers in North America and Europe. An MRI scan was obtained immediately before and 3 to 6 hours after treatment with intravenous tissue plasminogen activator 3 to 6 hours after symptom onset. Baseline MRI profiles were used to categorize patients into subgroups, and clinical responses were compared based on whether early reperfusion was achieved. Results Early reperfusion was associated with significantly increased odds of achieving a favorable clinical response in patients with a perfusion/diffusion mismatch (odds ratio, 5.4; p = 0.039) and an even more favorable response in patients with the Target Mismatch profile (odds ratio, 8.7; p = 0.011). Patients with the No Mismatch profile did not appear to benefit from early reperfusion. Early reperfusion was associated with fatal intracranial hemorrhage in patients with the Malignant profile. Interpretation For stroke patients treated 3 to 6 hours after onset, baseline MRI findings can identify subgroups that are likely to benefit from reperfusion therapies and can potentially identify subgroups that are unlikely to benefit or may be harmed. Ann Neurol 2006

1,210 citations

Journal ArticleDOI
TL;DR: The use of MR contrast agents to measure tissue perfusion is reviewed, and the potential of contrast‐enhanced NMR for high resolution in vivo mapping of both physiology and anatomy is suggested.
Abstract: Knowledge of regional hemodynamics has widespread application for both physiological research and clinical assessment. Here we review the use of MR contrast agents to measure tissue perfusion. Two primary mechanisms of image contrast are discussed: relaxivity and susceptibility effects. Relaxivity effects result from dipolar enhancement of T1 and T2 rates. Because tissue T1 rates are intrinsically smaller, the dominant effect is shortening of T1 relaxation times. The second mechanism of image contrast is the variation in tissue magnetic field produced by heterogeneous distribution of high magnetic susceptibility agents. Quantitation of tissue perfusion requires a detailed understanding of the relation between contrast agent concentration and associated MR signal changes. Studies to date show a linear relationship between contrast agent concentration and rate change in most organs. The exact nature of this relationship in the dynamic setting of rapid contrast agent passage through the microcirculatory bed is less well established. If this relationship is known, tracer kinetic modeling can be used to calculate regional blood flow and blood volume. Data are presented which indicate that this approach is feasible, and suggest the potential of contrast-enhanced NMR for high resolution in vivo mapping of both physiology and anatomy.

1,169 citations


Network Information
Related Topics (5)
Magnetic resonance imaging
61K papers, 1.5M citations
88% related
Ejection fraction
47.6K papers, 1.6M citations
82% related
Coronary artery disease
77.6K papers, 2.2M citations
81% related
Ischemia
53.6K papers, 1.9M citations
80% related
Stroke
112.7K papers, 3.7M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022372
2021394
2020362
2019407
2018336