scispace - formally typeset
Search or ask a question
Topic

Permafrost

About: Permafrost is a research topic. Over the lifetime, 11050 publications have been published within this topic receiving 297923 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Satellite-monitoring of the abundance of open water in the peatlands of the West Siberian Plain and the Hudson/James Bay Lowland is suggested as a likely method of detecting early effects of climatic warming upon boreal and subarctic peatland environments.
Abstract: Boreal and subarctic peatlands comprise a carbon pool of 455 Pg that has accumulated during the postglacial period at an average net rate of 0.096 Pg/yr (1 Pg = 1015g). Using Clymo's (1984) model, the current rate is estimated at 0.076 Pg/yr. Longterm drainage of these peatlands is estimated to be causing the oxidation to CO2 of a little more than 0.0085 Pg/yr, with conbustion of fuel peat adding °0.026 Pg/yr. Emissions of CH4 are estimated to release ° 0.046 Pg of carbon annually. Uncertainties beset estimates of both stocks and fluxes, particularly with regard to Soviet peatlands. The influence of water table alterations upon fluxes of both CO2 and CH4 is in great need of investigation over a wide range of peatland environments, especially in regions where permafrost melting, thermokarst erosion, and the development of thaw lakes are likely results of climatic warming. The role of fire in the carbon cycle of peatlands also deserves increased attention. Finally, satellite—monitoring of the abundance of open water in the peatlands of the West Siberian Plain and the Hudson/James Bay Lowland is suggested as a likely method of detecting early effects of climatic warming upon boreal and subarctic peatlands.

3,546 citations

Journal ArticleDOI
09 Apr 2015-Nature
TL;DR: In this paper, the authors find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.
Abstract: Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

2,282 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported a new estimate of the carbon pools in soils of the northern permafrost region, including deeper layers and pools not accounted for in previous analyses.
Abstract: of all soils in the northern permafrost region is approximately 18,782 � 10 3 km 2 ,o r approximately 16% of the global soil area. In the northern permafrost region, organic soils (peatlands) and cryoturbated permafrost-affected mineral soils have the highest mean soil organic carbon contents (32.2–69.6 kg m �2 ). Here we report a new estimate of the carbon pools in soils of the northern permafrost region, including deeper layers and pools not accounted for in previous analyses. Carbon pools were estimated to be 191.29 Pg for the 0–30 cm depth, 495.80 Pg for the 0–100 cm depth, and 1024.00 Pg for the 0–300 cm depth. Our estimate for the first meter of soil alone is about double that reported for this region in previous analyses. Carbon pools in layers deeper than 300 cm were estimated to be 407 Pg in yedoma deposits and 241 Pg in deltaic deposits. In total, the northern permafrost region contains approximately 1672 Pg of organic carbon, of which approximately 1466 Pg, or 88%, occurs in perennially frozen soils and deposits. This 1672 Pg of organic carbon would account for approximately 50% of the estimated global belowground organic carbon pool.

2,130 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present asynthesis of these observations, and conclude that roughly half of the pronounced recent rise in Northern Hemispherewinter temperatures reflects shifts in atmosphericcirculation. But, such changes are not consistent with anthropogenic forcing and include generally positive phases of the North Atlantic and ArcticOscillations and extratropical responses to the El-NinoSouthern Oscillation.
Abstract: Studies from a variety of disciplines documentrecentchange in the northern high-latitude environment.Prompted by predictions of an amplified response oftheArctic to enhanced greenhouse forcing, we present asynthesis of these observations. Pronounced winter andspring warming over northern continents since about 1970ispartly compensated by cooling over the northern NorthAtlantic. Warming is also evident over the centralArcticOcean. There is a downward tendency in sea ice extent,attended by warming and increased areal extent of theArctic Ocean's Atlantic layer. Negative snow coveranomalies have dominated over both continents sincethelate 1980s and terrestrial precipitation has increasedsince 1900. Small Arctic glaciers have exhibitedgenerally negative mass balances. While permafrost haswarmed in Alaska and Russia, it has cooled in easternCanada. There is evidence of increased plant growth,attended by greater shrub abundance and northwardmigration of the tree line. Evidence also suggeststhatthe tundra has changed from a net sink to a net sourceofatmospheric carbon dioxide.Taken together, these results paint a reasonablycoherent picture of change, but their interpretationassignals of enhanced greenhouse warming is open todebate.Many of the environmental records are either short,areof uncertain quality, or provide limited spatialcoverage. The recent high-latitude warming is also nolarger than the interdecadal temperature range duringthis century. Nevertheless, the general patterns ofchange broadly agree with model predictions. Roughlyhalfof the pronounced recent rise in Northern Hemispherewinter temperatures reflects shifts in atmosphericcirculation. However, such changes are notinconsistentwith anthropogenic forcing and include generallypositive phases of the North Atlantic and ArcticOscillations and extratropical responses to theEl-NinoSouthern Oscillation. An anthropogenic effect is alsosuggested from interpretation of the paleoclimaterecord,which indicates that the 20th century Arctic is thewarmest of the past 400 years.

2,081 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the global permafrost C pool and of the processes that might transfer this C into the atmosphere, as well as the associated ecosystem changes that occur with thawing.
Abstract: Thawing permafrost and the resulting microbial decomposition of previously frozen organic carbon (C) is one of the most significant potential feedbacks from terrestrial ecosystems to the atmosphere in a changing climate. In this article we present an overview of the global permafrost C pool and of the processes that might transfer this C into the atmosphere, as well as the associated ecosystem changes that occur with thawing. We show that accounting for C stored deep in the permafrost more than doubles previous high-latitude inventory estimates, with this new estimate equivalent to twice the atmospheric C pool. The thawing of permafrost with warming occurs both gradually and catastrophically, exposing organic C to microbial decomposition. Other aspects of ecosystem dynamics can be altered by climate change along with thawing permafrost, such as growing season length, plant growth rates and species composition, and ecosystem energy exchange. However, these processes do not appear to be able to com...

1,510 citations


Network Information
Related Topics (5)
Sediment
48.7K papers, 1.2M citations
81% related
Climate change
99.2K papers, 3.5M citations
80% related
Vegetation
49.2K papers, 1.4M citations
80% related
Global warming
36.6K papers, 1.6M citations
80% related
Climate model
22.2K papers, 1.1M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023921
20221,961
2021720
2020712
2019634
2018622