scispace - formally typeset
Search or ask a question
Topic

Permeability (earth sciences)

About: Permeability (earth sciences) is a research topic. Over the lifetime, 15424 publications have been published within this topic receiving 288535 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed comparison of permeability data derived from a selection of commonly used Hassler cells and probe permeameters is presented, where typical aberrations and transform equations are elaborated.
Abstract: . Permeability is one of the most important petrophysical parameters to describe the reservoir properties of sedimentary rocks, pertaining to problems in hydrology, geothermics, and hydrocarbon reservoir analysis. Outcrop analogue studies, well core measurements, and individual sample analysis take advantage of a variety of commercially available devices for permeability measurements. Very often, permeability data derived from different devices need to be merged within one study (e.g. outcrop minipermeametry and lab-based core plug measurements). To enhance accuracy of different gas-driven permeability measurements, device-specific aberrations need to be taken into account. The application of simple one-to-one correlations may draw the wrong picture of permeability trends. For this purpose, transform equations need to be established. This study presents a detailed comparison of permeability data derived from a selection of commonly used Hassler cells and probe permeameters. As a result of individual cross-plots, typical aberrations and transform equations are elaborated, which enable corrections for the specific permeameters. Permeability measurements of the commercially available ErgoTech gas permeameter and the TinyPerm II probe permeameter are well-comparable over the entire range of permeability, with R2 = 0.955. Aberrations are mostly identified in the permeability range

99 citations

Journal ArticleDOI
TL;DR: In this paper, a compacted clay is subjected to five cycles of freezing and thawing at constant water content, and the test specimens are then permeated in flexiblewall permeameters at a relatively low effective stre...
Abstract: A compacted clay is subjected to five cycles of freezing and thawing at constant water content. The test specimens are then permeated in flexiblewall permeameters at a relatively low effective stre...

99 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the influence of radial stress on porosity and permeability for hydraulic flow along the axial direction in three porous sandstones and found that shear-enhanced compaction and coupling of the deviatoric and hydrostatic stresses induces considerable permeability and porosity reduction.

99 citations

Journal ArticleDOI
TL;DR: In this article, a predictive approach that combines fractal scaling in porous medium with principles of fluid flow is proposed to calculate porosity and permeability of the caved zone (gob) in a longwall operation.
Abstract: The porosity and permeability of the caved zone (gob) in a longwall operation impact many ventilation and methane control related issues, such as air leakage into the gob, the onset of spontaneous combustion, methane and air flow patterns in the gob, and the interaction of gob gas ventholes with the mining environment. Despite its importance, the gob is typically inaccessible for performing direct measurements of porosity and permeability. Thus, there has always been debate on the likely values of porosity and permeability of the caved zone and how these values can be predicted. This study demonstrates a predictive approach that combines fractal scaling in porous medium with principles of fluid flow. The approach allows the calculation of porosity and permeability from the size distribution of broken rock material in the gob, which can be determined from image analyzes of gob material using the theories on a completely fragmented porous medium. The virtual fragmented fractal porous medium so generated is exposed to various uniaxial stresses to simulate gob compaction and porosity and permeability changes during this process. The results suggest that the gob porosity and permeability values can be predicted by this approach and the presented models are capable to produce values close to values documented by other researchers.

99 citations

Journal ArticleDOI
TL;DR: In this article, the effects of desiccation cracks on the hydraulic conductivity of the compacted soil were measured and two soils of diverse mineralogy and typical of soils used for clay liner construction were selected for use.
Abstract: Despite our best efforts to reduce the waste stream, there will always remain some residues which cannot be further treated and must be disposed in landfills. One critical aspect of landfill construction is the integrity of the landfill liner. Current landfill liner technology includes a composite liner which consists of a FML component and a compacted soil component. The primary characteristic for selecting a soil for use in composite liner construction is that the soil have a saturated hydraulic conductivity of 1 × 10−7 cm s−1 or less. In the present study the effects of desiccation cracks on the hydraulic conductivity of the compacted soil were measured. Two soils of diverse mineralogy and typical of soils used for clay liner construction were selected for use. Each was tested in its native state plus after the addition of 30% sand. Laboratory measurements were made of the volumetric shrinkage of each soil. In addition, the hydraulic conductivity was determined using 10 cm diameter fixed wall permeameters. Additional conductivity measurements were made using 60 cm diameter fixed wall double ring permeameters which had been exposed to 0, 1, and 2 periods of desiccation prior to hydraulic conductivity determinations. The data show that laboratory measurements using 10- cm diameter fixed wall permeameters underestimate the hydraulic conductivity of the same soils when packed in large diameter permeameters. It was also found that exposure to two cycles of desiccation resulted in large increases in hydraulic conductivity. The time required to reach a steady outflow volume decreased as the amount of desiccation increased. The hydraulic conductivities of soils which had been allowed to dry were greater than those which were not allowed to dry prior to measurement. The relationship between volumetric shrinkage and the increase in hydraulic conductivity after desiccation indicates that soils which exhibit less than 11% shrinkage in the laboratory, exhibit increases in K of less than a factor of 2 upon desiccation. Clay soils with greater than 11% shrinkage can potentially be amended with sand to decrease the volumetric shrinkage and their response to desiccation.

99 citations


Network Information
Related Topics (5)
Soil water
97.8K papers, 2.9M citations
78% related
Surface runoff
45.1K papers, 1.1M citations
75% related
Water content
49.8K papers, 1.1M citations
75% related
Sediment
48.7K papers, 1.2M citations
74% related
Stress (mechanics)
69.5K papers, 1.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202242
2021833
2020901
2019916
2018847
2017849