scispace - formally typeset
Search or ask a question
Topic

Permeability (earth sciences)

About: Permeability (earth sciences) is a research topic. Over the lifetime, 15424 publications have been published within this topic receiving 288535 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the intrinsic permeability of sedimentary rocks from the western foothills of Taiwan by using nitrogen gas and distilled water as pore fluids in effective pressure cycling tests at room temperature was analyzed in view of the Klinkenberg effect.

224 citations

Journal ArticleDOI
TL;DR: In this article, a hydraulic testing system was built to investigate the hydraulic behavior of rough tension fracture, which is capable of measuring both the flow rates and the normal and shear displacement of a rock fracture.
Abstract: A hydro-mechanical testing system, which is capable of measuring both the flow rates and the normal and shear displacement of a rock fracture, was built to investigate the hydraulic behaviour of rough tension fractures. Laboratory hydraulic tests in linear flow were conducted on rough rock fractures, artificially created using a splitter under various normal and shear loading. Prior to the tests, aperture distributions were determined by measuring the topography of upper and lower fracture surfaces using a laser profilometer. Experimental variograms of the initial aperture distributions were classified into four groups of geostatistical model, though the overall experimental variograms could be well fitted to the exponential model. The permeability of the rough rock fractures decayed exponentially with respect to the normal stress increase up to 5 MPa. Hydraulic behaviours during monotonic shear loading were significantly affected by the dilation occurring until the shear stress reached the peak strength. With the further dilation, the permeability of the rough fracture specimens increased more. However, beyond shear displacement of about 7 to 8 mm, permeability gradually reached a maximum threshold value. The combined effects of both asperity degradation and gouge production, which prohibited the subsequent enlargement of mean fracture aperture, mainly caused this phenomenon. Permeability changes during cyclic shear loading showed somewhat irregular variations, especially after the first shear loading cycle, due to the complex interaction from asperity degradations and production of gouge materials. The relation between hydraulic and mechanical apertures was analyzed to investigate the valid range of mechanical apertures to be applied to the cubic law.

223 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the pore fluid volume evolution of initially intact crystalline rocks (Cerro Cristales granodiorite and Westerly granite) under increasing differential load leading to macroscopic failure at water pore pressures of 50 MPa and varying effective pressures from 10 to 50 MPA.
Abstract: [1] Detailed experimental studies of the development of permeability of crustal rock during deformation are essential in helping to understand fault mechanics and constrain larger-scale models that predict bulk fluid flow within the crust. Permeability is particularly enhanced in the damage zone of faults, where microfracture damage accumulates under stress less than that required for macroscopic failure. Experiments performed in the prefailure region can provide data directly applicable to these zones of microfracture damage surrounding faults. The strength, permeability, and pore fluid volume evolution of initially intact crystalline rocks (Cerro Cristales granodiorite and Westerly granite) under increasing differential load leading to macroscopic failure has been determined at water pore pressures of 50 MPa and varying effective pressures from 10 to 50 MPa. Permeability is seen to increase by up to, and over, 2 orders of magnitude prior to macroscopic failure, with the greatest increase seen at lowest effective pressures. Postfailure permeability is shown to be over 3 orders of magnitude higher than initial intact permeabilities and approaches the lower limit of predicted in situ bulk crustal permeabilities. Increasing amplitude cyclic loading tests show permeability-stress hysteresis, with high permeabilities maintained as differential stress is reduced and the greatest permeability increases are seen between 90 and 99% of the failure stress. Prefailure permeabilities are nearly 7 to 9 orders of magnitude lower than that predicted by some high-pressure diffusive models suggesting that if these models are correct, microfracture matrix flow cannot dominate, and that bulk fluid flow must be dominated by larger-scale structures such as macrofractures. We present a model, based on our data, in which the permeability of a highly stressed fault tip process zone in low-permeability crystalline rocks increases by more than 2 orders of magnitude. Stress reduction related to the onward migration of the fault tip close damage zone cracks, while some permeability is maintained due to hysteresis from permanent microfracture damage.

223 citations

Journal ArticleDOI
TL;DR: In this article, the in-situ stress, pore pressure and permeability in the Southern Qinshui Basin, one of the largest coalbed methane basins in China, were investigated.

223 citations


Network Information
Related Topics (5)
Soil water
97.8K papers, 2.9M citations
78% related
Surface runoff
45.1K papers, 1.1M citations
75% related
Water content
49.8K papers, 1.1M citations
75% related
Sediment
48.7K papers, 1.2M citations
74% related
Stress (mechanics)
69.5K papers, 1.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202242
2021833
2020901
2019916
2018847
2017849