scispace - formally typeset
Search or ask a question
Topic

Permeability (earth sciences)

About: Permeability (earth sciences) is a research topic. Over the lifetime, 15424 publications have been published within this topic receiving 288535 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the influence of gas diffusion behavior on gas flow and permeability evolution in coal seams is evaluated, and the numerical results indicate that the effects of the gas diffusion behaviour and Klinkenberg behavior can have a critical influence on the gas pressure, residual gas content, and percolation evolution during the entire methane degasification period.
Abstract: The influence of gas diffusion behavior on gas flow and permeability evolution in coal seams is evaluated in this paper. Coalbed methane (CBM) reservoirs differ from conventional porous media and fractured gas reservoirs due to certain unique features, which lead to two distinct gas pressures: one in fractures and the other in the coal matrix. The latter pressure, also known as the sorption pressure, will be used in calculating sorption-based volume changes. The effective stress laws for single-porosity media is not suitable for CBM reservoirs, and the effective stress laws for multi-porosity media need to be applied. The realization of the above two points is based on the study of the two-phase state of gas migration (involving Fickian diffusion and Darcy flow) in a coal seam. Then, a general porosity and permeability model based on the P-M model is proposed to fit this phenomenon. Moreover, the Klinkenberg effect has been taken into account and set as a reference object. Finally, a coupled gas flow and coal deformation model is proposed and solved by using a finite element method. The numerical results indicate that the effects of gas diffusion behavior and Klinkenberg behavior can have a critical influence on the gas pressure, residual gas content, and permeability evolution during the entire methane degasification period, and the impacts of the two effects are of the same order of magnitude. Without considering the gas diffusion effect, the gas pressure and residual gas content will be underestimated, and the permeability will be overestimated.

126 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of pressure on gas permeability in the pore network structure was investigated using non-equilibrium molecular dynamics (NEMD) simulations with an external driving force imposed on the 3-D carbon pore networks generated atomistically using the Voronoi tessellation method.

126 citations

Journal ArticleDOI
TL;DR: In this paper, an alternative approach is proposed to develop an improved coal permeability model for coalbed methane (CBM) and CO2-enhanced CBM (ECBM) recovery, and CO 2 geosequestration in coal.

125 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of changing effective stresses, in terms of confining stresses and pore pressure, incorporating the role of coal swelling with time on the flow pattern of gaseous CO 2.

125 citations

Journal ArticleDOI
TL;DR: In this paper, a three-dimensional reservoir model was developed based on a structural geological model to simulate and understand the complex interaction of the hydrothermal processes in a geothermal research doublet during geothermal power production.
Abstract: Understanding hydrothermal processes during production is critical to optimal geothermal reservoir management and sustainable utilization. This study addresses the hydrothermal (HT) processes in a geothermal research doublet consisting of the injection well E GrSk3/90 and production well Gt GrSk4/05 at the deep geothermal reservoir of Gros Schonebeck (north of Berlin, Germany) during geothermal power production. The reservoir is located between −4050 to −4250 m depth in the Lower Permian of the Northeast German Basin. Operational activities such as hydraulic stimulation, production (T = 150°C; Q = −75 m3 h−1; C = 265 g l−1) and injection (T = 70°C; Q = 75 m3 h−1; C = 265 g l−1) change the HT conditions of the geothermal reservoir. The most significant changes affect temperature, mass concentration and pore pressure. These changes influence fluid density and viscosity as well as rock properties such as porosity, permeability, thermal conductivity and heat capacity. In addition, the geometry and hydraulic properties of hydraulically induced fractures vary during the lifetime of the reservoir. A three-dimensional reservoir model was developed based on a structural geological model to simulate and understand the complex interaction of such processes. This model includes a full HT coupling of various petrophysical parameters. Specifically, temperature-dependent thermal conductivity and heat capacity as well as the pressure-, temperature- and mass concentration-dependent fluid density and viscosity are considered. These parameters were determined by laboratory and field experiments. The effective pressure dependence of matrix permeability is less than 2.3% at our reservoir conditions and therefore can be neglected. The results of a three-dimensional thermohaline finite-element simulation of the life cycle performance of this geothermal well doublet indicate the beginning of thermal breakthrough after 3.6 years of utilization. This result is crucial for optimizing reservoir management. Geofluids (2010) 10, 406–421

125 citations


Network Information
Related Topics (5)
Soil water
97.8K papers, 2.9M citations
78% related
Surface runoff
45.1K papers, 1.1M citations
75% related
Water content
49.8K papers, 1.1M citations
75% related
Sediment
48.7K papers, 1.2M citations
74% related
Stress (mechanics)
69.5K papers, 1.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202242
2021833
2020901
2019916
2018847
2017849