scispace - formally typeset
Search or ask a question
Topic

Perovskite solar cell

About: Perovskite solar cell is a research topic. Over the lifetime, 4701 publications have been published within this topic receiving 216807 citations. The topic is also known as: PSC.


Papers
More filters
Journal ArticleDOI
TL;DR: Current-voltage curves and capacitive responses of perovskite-based solar cells are connected and the observed hysteretic effect in the dark current originates from the slow capacitive mechanisms.
Abstract: Despite spectacular advances in conversion efficiency of perovskite solar cell many aspects of its operating modes are still poorly understood. Capacitance constitutes a key parameter to explore which mechanisms control particular functioning and undesired effects as current hysteresis. Analyzing capacitive responses allows addressing not only the nature of charge distribution in the device but also the kinetics of the charging processes and how they alter the solar cell current. Two main polarization processes are identified. Dielectric properties of the microscopic dipolar units through the orthorhombic-to-tetragonal phase transition account for the measured intermediate frequency capacitance. Electrode polarization caused by interfacial effects, presumably related to kinetically slow ions piled up in the vicinity of the outer interfaces, consistently explain the reported excess capacitance values at low frequencies. In addition, current–voltage curves and capacitive responses of perovskite-based solar ...

421 citations

Journal ArticleDOI
TL;DR: A simple sol-gel-processed NiO nanocrystal (NC) layer is used as the hole-transport layer in an inverted perovskite solar cell based on an inorganic hole-extracting layer, which observed a cell efficiency of 9.11 %, which is by far the highest reported for planar perovSKite solar cells based on a inorganic holes-extraction layer.
Abstract: Hybrid organic/inorganic perovskite solar cells have been rapidly evolving with spectacular successes in both nanostructured and thin-film versions. Herein, we report the use of a simple sol-gel-processed NiO nanocrystal (NC) layer as the hole-transport layer in an inverted perovskite solar cell. The thin NiO NC film with a faceted and corrugated surface enabled the formation of a continuous and compact layer of well-crystallized CH3 NH3 PbI3 in a two-step solution process. The hole-extraction and -transport capabilities of this film interfaced with the CH3 NH3 PbI3 film were higher than those of organic PEDOT:PSS layers. The cell with a NiO NC film with a thickness of 30-40 nm exhibited the best performance, as a thinner layer led to a higher leakage current, whereas a thicker layer resulted in a higher series resistance. With the NiO film, we observed a cell efficiency of 9.11 %, which is by far the highest reported for planar perovskite solar cells based on an inorganic hole-extracting layer.

420 citations

Journal ArticleDOI
TL;DR: Lead thiocyanate in the perovskite precursor can increase the grain size of a perovSkite thin film and reduce the conductivity of the grain boundaries, leading to perovkite solar cells with reduced hysteresis and enhanced fill factor.
Abstract: Lead thiocyanate in the perovskite precursor can increase the grain size of a perovskite thin film and reduce the conductivity of the grain boundaries, leading to perovskite solar cells with reduced hysteresis and enhanced fill factor. A planar perovskite solar cell with grain boundary and interface passivation achieves a steady-state efficiency of 18.42%.

419 citations

Journal ArticleDOI
TL;DR: A multistep solution-processing method was developed to fabricate high-purity inorganic CsPbBr3 perovskite films for use in efficient solar cells with high efficiency and improved stability, and upon interfacial modification with graphene quantum dots it achieved a power conversion efficiency as high as 9.72 % under standard solar illumination conditions.
Abstract: All-inorganic perovskite solar cells with high efficiency and improved stability are promising for commercialization. A multistep solution-processing method was developed to fabricate high-purity inorganic CsPbBr3 perovskite films for use in efficient solar cells. By tuning the number of deposition cycles (n) of a CsBr solution, the phase conversion from CsPb2 Br5 (n ≤3), to CsPbBr3 (n=4), and Cs4 PbBr6 (n≥5) was optimized to achieve vertical- and monolayer-aligned grains. Upon interfacial modification with graphene quantum dots, the all-inorganic perovskite solar cell (without a hole-transporting layer) achieved a power conversion efficiency (PCE) as high as 9.72 % under standard solar illumination conditions. Under challenging conditions, such as 90 % relative humidity (RH) at 25 °C or 80 °C at zero humidity, the optimized device retained 87 % PCE over 130 days or 95 % over 40 days, compared to the initial efficiency.

414 citations

Journal ArticleDOI
TL;DR: A robust buffer layer is introduced by solution-processing AZO nanoparticles, enabling a sputtered amorphous ITO layer without damaging the underlying device.
Abstract: A sputtered oxide layer enabled by a solution-processed oxide nanoparticle buffer layer to protect underlying layers is used to make semi-transparent perovskite solar cells. Single-junction semi-transparent cells are 12.3% efficient, and mechanically stacked tandems on silicon solar cells are 18.0% efficient. The semi-transparent perovskite solar cell has a T 80 lifetime of 124 h when operated at the maximum power point at 100 °C without additional sealing in ambient atmosphere under visible illumination.

412 citations


Network Information
Related Topics (5)
Graphene
144.5K papers, 4.9M citations
88% related
Carbon nanotube
109K papers, 3.6M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Thin film
275.5K papers, 4.5M citations
86% related
Oxide
213.4K papers, 3.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023225
2022409
2021631
2020770
2019835
2018780