scispace - formally typeset
Search or ask a question
Topic

Perovskite solar cell

About: Perovskite solar cell is a research topic. Over the lifetime, 4701 publications have been published within this topic receiving 216807 citations. The topic is also known as: PSC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an improved interface between mesoporous/compact TiO2 and perovskite is achieved to enhance the performance of PSC, achieving 20.43% power conversion efficiency.

53 citations

Journal ArticleDOI
TL;DR: N nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.
Abstract: Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic–inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on the cross section of SnO2-based PS solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having an identical device structure: (1) cells with PS deposited directly on bare fluorine-doped SnO2 (FTO)-coated glass; (2) cells with an intrinsic SnO2 thin layer on the top of FTO as an effective ESL; and (3) cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO2-ESL <...

53 citations

Journal ArticleDOI
TL;DR: UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer.
Abstract: In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.

53 citations

Journal ArticleDOI
TL;DR: In this article, a thin molybdenum trioxide (MoO3) film was introduced in between the Spiro-OMeTAD and the Ag electrode to reduce the series resistance and reverse saturation current density of the devices, thereby leading to improved fill factor and opencircuit voltage.
Abstract: Replacement of commonly gold (Au) with other non-precious metals is a crucial step for low-cost perovskite solar cells (PSCs). However, severe performance degradations always occurred when we get rid of the Au electrode, mainly because of the deteriorated hole-transporting properties. Here, we reported that the efficiency of the PSCs featuring silver (Ag) back-electrode can be increased from 17.02 to 18.62% after introducing a thin molybdenum trioxide (MoO3) film in between the Spiro-OMeTAD and the Ag electrode. Characterizations from impedance spectrum and dark current density showed that the addition of MoO3 can effectively reduce the series resistance and reverse saturation current density of the devices, thereby leading to improved fill factor and open-circuit voltage. The enhancements in hole transport and extraction at the interface were further confirmed by the external quantum efficiency and photoluminescence tests. Our results suggested that silver electrode with MoO3 is a promising design strategy for efficient and cost-effective PSCs.

53 citations

Journal ArticleDOI
TL;DR: The device analysis reveals the soothing of the defect activities with shallower defect states and passivation of the interface recombination centers for the device with C60MC12, ascribing this property to the crystallinity of fullerene derivatives as ETL, which is also important for the optimization of device parameters, besides the band alignment matching of WB perovskite devices.
Abstract: Wide-band-gap (WB) perovskite devices are promising as the top cell of silicon-perovskite tandem devices to boost the efficiency beyond the Shockley–Queisser limit. Here, we tailor the performance parameters of WB mixed-halide perovskite solar cell with long alkyl chain-substituted fullerene derivatives as an electron transport layer (ETL). The device with C60-fused N-methylpyrrolidine-meta-dodecyl phenyl (C60MC12) demonstrates an enhanced power conversion efficiency of 16.74% with the record open circuit voltage (VOC) of 1.24 V, an increase by 70 mV with concomitant VOC deficit reduction to 0.47 V. This is achieved by mitigating the recombination loss through the use of highly crystalline C60MC12 film compared to amorphous [6,6]-phenyl-C61-butyric acid methyl ester layer. The device analysis reveals the soothing of the defect activities with shallower defect states and passivation of the interface recombination centers for the device with C60MC12. We ascribe this property to the crystallinity of fulleren...

53 citations


Network Information
Related Topics (5)
Graphene
144.5K papers, 4.9M citations
88% related
Carbon nanotube
109K papers, 3.6M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Thin film
275.5K papers, 4.5M citations
86% related
Oxide
213.4K papers, 3.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023225
2022409
2021631
2020770
2019835
2018780