scispace - formally typeset
Search or ask a question
Topic

Perovskite solar cell

About: Perovskite solar cell is a research topic. Over the lifetime, 4701 publications have been published within this topic receiving 216807 citations. The topic is also known as: PSC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a semi-transparent perovskite solar cell (PSC) with a maximum efficiency of 18.1% at a bandgap of ∼1.62 eV was developed.
Abstract: A perovskite/CIGS tandem configuration is an attractive and viable approach to achieve an ultra-high efficiency and cost-effective all-thin-film solar cell. In this work, we developed a semi-transparent perovskite solar cell (PSC) with a maximum efficiency of 18.1% at a bandgap of ∼1.62 eV. Combining this cell in a mechanically stacked tandem configuration with a 16.5% CIGS cell results in a tandem efficiency of 23.9%. We also present a semi-transparent high bandgap (∼1.75 eV) PSC with a champion efficiency of 16.0% that enables a tandem efficiency of 23.4%. Optical simulation predicts that a perovskite/CIGS tandem efficiency of over 30% is feasible with a high bandgap perovskite top cell. The multiple-cation perovskite absorbers enabling high tandem efficiencies in this work are found to be remarkably less sensitive towards oxygen exposure compared to the widely used CH3NH3PbI3 (MAPbI3). By combining systematic compositional tuning of perovskite materials and the simultaneous probe of terminal open-circuit voltage (Voc) and Photoluminence (PL) of PSCs, it is deduced that an interaction between methylamonnium (MA) cations and oxygen molecules results in an increased surface recombination rate, and this is the main driver for oxygen-induced degradation. The extraordinary device performance and stability reported in this work pave the way for ultimately realizing the commercialization of all-thin-film photovoltaic technology.

192 citations

Journal ArticleDOI
TL;DR: These cost-effective, solution-processible perovskite hybrid tandem solar cells with high open-circuit voltages are fabricated by the simple lamination of a front planar MAPbBr3 perovSKite cell and a back MAPbI3 planar perovSkite solar cell.
Abstract: Perovskite-perovskite tandem solar cells with open-circuit voltages of over 2.2 V are reported. These cost-effective, solution-processible perovskite hybrid tandem solar cells with high open-circuit voltages are fabricated by the simple lamination of a front planar MAPbBr3 perovskite cell and a back MAPbI3 planar perovskite solar cell.

192 citations

Journal ArticleDOI
TL;DR: In this review, the advances in the preparation of semitransparent Oscs, DSCs, and PSCs are summarized, focusing on the top transparent electrode materials and device designs, which are all crucial to the performance of these devices.
Abstract: Semitransparent solar cells can provide not only efficient power-generation but also appealing images and show promising applications in building integrated photovoltaics, wearable electronics, photovoltaic vehicles and so forth in the future. Such devices have been successfully realized by incorporating transparent electrodes in new generation low-cost solar cells, including organic solar cells (OSCs), dye-sensitized solar cells (DSCs) and organometal halide perovskite solar cells (PSCs). In this review, the advances in the preparation of semitransparent OSCs, DSCs, and PSCs are summarized, focusing on the top transparent electrode materials and device designs, which are all crucial to the performance of these devices. Techniques for optimizing the efficiency, color and transparency of the devices are addressed in detail. Finally, a summary of the research field and an outlook into the future development in this area are provided.

191 citations

Book ChapterDOI
21 Aug 2019-Joule
TL;DR: In this paper, the authors investigated fundamental challenges of flexible perovskite solar cells (F-PSCs) regarding relatively low efficiency and stability and demonstrate the recent efforts to overcome big hurdles.

191 citations

Journal ArticleDOI
TL;DR: The controlled growth of hybrid perovskites on nickel oxide (NiO) is shown, resulting in the formation of thin films with enhanced crystallinity with characteristic peak width and splitting reminiscent of the tetragonal phase in single crystals, elucidate the critical role of the quality of thePerovskite/hole transport layer interface in rendering high-performance and photostable optoelectronic devices.
Abstract: Hybrid perovskites are on a trajectory toward realizing the most efficient single-junction, solution-processed photovoltaic devices. However, a critical issue is the limited understanding of the correlation between the degree of crystallinity and the emergent perovskite/hole (or electron) transport layer on device performance and photostability. Here, the controlled growth of hybrid perovskites on nickel oxide (NiO) is shown, resulting in the formation of thin films with enhanced crystallinity with characteristic peak width and splitting reminiscent of the tetragonal phase in single crystals. Photophysical and interface sensitive measurements reveal a reduced trap density at the perovskite/NiO interface in comparison with perovskites grown on poly(3,4-ethylene dioxy thiophene) polystyrene sulfonate. Photovoltaic cells exhibit a high open circuit voltage (1.12 V), indicating a near-ideal energy band alignment. Moreover, photostability of photovoltaic devices up to 10-Suns is observed, which is a direct result of the superior crystallinity of perovskite thin films on NiO. These results elucidate the critical role of the quality of the perovskite/hole transport layer interface in rendering high-performance and photostable optoelectronic devices.

191 citations


Network Information
Related Topics (5)
Graphene
144.5K papers, 4.9M citations
88% related
Carbon nanotube
109K papers, 3.6M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Thin film
275.5K papers, 4.5M citations
86% related
Oxide
213.4K papers, 3.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023225
2022409
2021631
2020770
2019835
2018780