scispace - formally typeset
Search or ask a question
Topic

Perovskite solar cell

About: Perovskite solar cell is a research topic. Over the lifetime, 4701 publications have been published within this topic receiving 216807 citations. The topic is also known as: PSC.


Papers
More filters
Journal ArticleDOI
TL;DR: This study develops a simple yet robust acid-treatment strategy to judiciously create an amorphous TiO 2 buffer layer intimately situated on the anataseTiO 2 surface as electron transport layer (ETL) for efficient electron transport.
Abstract: The ability to effectively transfer photoexcited electrons and holes is an important endeavor toward achieving high-efficiency solar energy conversion. Now, a simple yet robust acid-treatment strategy is used to judiciously create an amorphous TiO2 buffer layer intimately situated on the anatase TiO2 surface as an electron-transport layer (ETL) for efficient electron transport. The facile acid treatment is capable of weakening the bonding of zigzag octahedral chains in anatase TiO2 , thereby shortening staggered octahedron chains to form an amorphous buffer layer on the anatase TiO2 surface. Such amorphous TiO2 -coated ETL possesses an increased electron density owing to the presence of oxygen vacancies, leading to efficient electron transfer from perovskite to TiO2 . Compared to pristine TiO2 -based devices, the perovskite solar cells (PSCs) with acid-treated TiO2 ETL exhibit an enhanced short-circuit current and power conversion efficiency.

102 citations

Journal ArticleDOI
Jialong Duan1, Yuanyuan Zhao1, Yudi Wang1, Xiya Yang1, Qunwei Tang1 
TL;DR: This work demonstrates the hole boosted p-type Cu(Cr,M)O2 nanocrystals are promising hole-transporting materials for all-inorganic PSCs.
Abstract: The all-inorganic CsPbBr3 perovskite solar cell (PSC) is a promising solution to balance the high efficiency and poor stability of state-of-the-art organic-inorganic PSCs. Setting inorganic hole-transporting layers at the perovskite/electrode interface decreases charge carrier recombination without sacrificing superiority in air. Now, M-substituted, p-type inorganic Cu(Cr,M)O2 (M=Ba2+ , Ca2+ , or Ni2+ ) nanocrystals with enhanced hole-transporting characteristics by increasing interstitial oxygen effectively extract holes from perovskite. The all-inorganic CsPbBr3 PSC with a device structure of FTO/c-TiO2 /m-TiO2 /CsPbBr3 /Cu(Cr,M)O2 /carbon achieves an efficiency up to 10.18 % and it increases to 10.79 % by doping Sm3+ ions into perovskite halide, which is much higher than 7.39 % for the hole-free device. The unencapsulated Cu(Cr,Ba)O2 -based PSC presents a remarkable stability in air in either 80 % humidity over 60 days or 80 °C conditions over 40 days or light illumination for 7 days.

102 citations

Journal ArticleDOI
TL;DR: In this article, the application of simple, low temperature processed (low temperature processed) electron transport layer for perovskite solar cells with roll-to-roll process is reported.

101 citations

Journal ArticleDOI
TL;DR: A two-step protocol where a crystalline PbI2 precursor film is converted to MAPbI3-xClx perovskite upon immersion in a mixed solution of methylammonium iodide and methylimmonium chloride is applied to elucidate the crystallization process of perovkite films deposited via a two- step technique crucial for controlled film formation, improved reproducibility, and high photovoltaic performance.
Abstract: Recently, hybrid perovskites have gathered much interest as alternative materials for the fabrication of highly efficient and cost-competitive solar cells; however, many questions regarding perovskite crystal formation and deposition methods remain. Here we have applied a two-step protocol where a crystalline PbI2 precursor film is converted to MAPbI3–xClx perovskite upon immersion in a mixed solution of methylammonium iodide and methylammonium chloride. We have investigated both films with grazing incidence small-angle X-ray scattering to probe the inner film morphology. Our results demonstrate a strong link between lateral crystal sizes in the films before and after conversion, which we attribute to laterally confined crystal growth. Additionally, we observe an accumulation of smaller grains within the bulk in contrast with the surface. Thus, our results help to elucidate the crystallization process of perovskite films deposited via a two-step technique that is crucial for controlled film formation, imp...

101 citations

Journal ArticleDOI
TL;DR: In this paper, the management of perovskite intermediates was shown to improve the performance of solar cells by controlling surface morphology, grain size, and degree of crystallinity.
Abstract: Organic–inorganic hybrid lead halide perovskites (e.g., CH3NH3PbX3, X = Cl, Br, I) hold great promise in optoelectronic devices, e.g., solar cells. High-performance devices have been realized by controlling the perovskite surface morphology, grain size, and degree of crystallinity. However, the role of the components during film formation and crystallization remains mysterious. Here, we show the management of perovskite intermediates to construct perovskite films with uniform perovskite crystals and controlled surface morphology using methylammonium acetate (MAAc) to retard the reaction between PbI2 and MAI in the solution. The formation of MAPbI3 was allowed via the exchange of I− anions from the neighboring MAI molecules to the perovskite intermediate phases replacing Ac− anions. A highly efficient perovskite solar cell with a power conversion efficiency of 18.09% was achieved. The experimental and theoretical studies reveal that perovskite intermediates play an important role in facilitating homogeneous nucleation or modulating the crystallization kinetics. These results also provide important progress towards the understanding of perovskite intermediate phases for advancing the building of perovskite semiconductors.

101 citations


Network Information
Related Topics (5)
Graphene
144.5K papers, 4.9M citations
88% related
Carbon nanotube
109K papers, 3.6M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Thin film
275.5K papers, 4.5M citations
86% related
Oxide
213.4K papers, 3.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023225
2022409
2021631
2020770
2019835
2018780