scispace - formally typeset
Search or ask a question
Topic

Perovskite solar cell

About: Perovskite solar cell is a research topic. Over the lifetime, 4701 publications have been published within this topic receiving 216807 citations. The topic is also known as: PSC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, high performance inverted planar perovskite solar cells (PSCs) using sol-gel processed Y-doped NiO thin films as hole transport layer (HTL) were demonstrated.

93 citations

Journal ArticleDOI
28 Sep 2017-ACS Nano
TL;DR: The successful fabrication of an all-inorganic CsPbBr3 perovskite QD sensitized solar cell is reported and the imaging of anomalous electrical potential distribution across the layers of the cell under different illuminations using Kelvin probe force microscopy is reported.
Abstract: Highly luminescent CsPbBr3 perovskite quantum dots (QDs) have gained huge attention in research due to their various applications in optoelectronics, including as a light absorber in photovoltaic solar cells To improve the performances of such devices, it requires a deeper knowledge on the charge transport dynamics inside the solar cell, which are related to its power-conversion efficiency Here, we report the successful fabrication of an all-inorganic CsPbBr3 perovskite QD sensitized solar cell and the imaging of anomalous electrical potential distribution across the layers of the cell under different illuminations using Kelvin probe force microscopy Carrier generation, separation, and transport capacity inside the cells are dependent on the light illumination Large differences in surface potential between electron and hole transport layers with unbalanced carrier separation at the junction have been observed under white light (full solar spectrum) illumination However, under monochromatic light (sin

93 citations

Journal ArticleDOI
TL;DR: In this paper, the combined anti-reflection and scattering properties of two types of light trapping (LT) structures, based on TiO2 semi-spheroidal geometries with honeycomb periodicity, for application in PSCs with substrate configuration and different perovskite layer thicknesses, were optimized.

93 citations

Journal ArticleDOI
TL;DR: The prevailing view of hydrogen bonding in CH3NH3PbI3 is misleading as it does not alone determine the a−b+a− tilting pattern of the PbI64− octahedra, so these interactions should not be regarded as the sole determinants of octahedral tilting since lattice dynamics is known to play a critical role.
Abstract: The CH3NH3PbI3 (methylammonium lead triiodide) perovskite semiconductor system has been viewed as a blockbuster research material during the last five years. Because of its complicated architecture, several of its technological, physical and geometrical issues have been examined many times. Yet this has not assisted in overcoming a number of problems in the field nor in enabling the material to be marketed. For instance, these studies have not clarified the nature and type of hydrogen bonding and other noncovalent interactions involved; the origin of hysteresis; the actual role of the methylammonium cation; the nature of polarity associated with the tetragonal geometry; the unusual origin of various frontier orbital contributions to the conduction band minimum; the underlying phenomena of spin-orbit coupling that causes significant bandgap reduction; and the nature of direct-to-indirect bandgap transition features. Arising from many recent reports, it is now a common belief that the I···H–N interaction formed between the inorganic framework and the ammonium group of CH3NH3+ is the only hydrogen bonded interaction responsible for all temperature-dependent geometrical polymorphs of the system, including the most stable one that persists at low-temperatures, and the significance of all other noncovalent interactions has been overlooked. This study focussed only on the low temperature orthorhombic polymorph of CH3NH3PbI3 and CD3ND3PbI3, where D refers deuterium. Together with QTAIM, DORI and RDG based charge density analyses, the results of density functional theory calculations with PBE with and without van der Waals corrections demonstrate that the prevailing view of hydrogen bonding in CH3NH3PbI3 is misleading as it does not alone determine the a−b+a− tilting pattern of the PbI64− octahedra. This study suggests that it is not only the I···H/D–N, but also the I···H/D–C hydrogen/deuterium bonding and other noncovalent interactions (viz. tetrel-, pnictogen- and lump-hole bonding interactions) that are ubiquitous in the orthorhombic CH3NH3PbI3/CD3ND3PbI3 perovskite geometry. Their interplay determines the overall geometry of the polymorph, and are therefore responsible in part for the emergence of the functional optical properties of this material. This study also suggests that these interactions should not be regarded as the sole determinants of octahedral tilting since lattice dynamics is known to play a critical role as well, a common feature in many inorganic perovskites both in the presence and the absence of the encaged cation, as in CsPbI3/WO3 perovskites, for example.

92 citations

Journal ArticleDOI
TL;DR: A thin wide band gap organic semiconductor N,N,N',N'-tetraphenyl-benzidine layer has been introduced by spin-coating to engineer the metal-semiconductor interface in the hole-conductor-free perovskite solar cells and it is revealed that this modification can increase interfacial resistance of CH3NH3PbI3/Au interface and retard electron recombination process in the metal -semiconductors interface.
Abstract: A thin wide band gap organic semiconductor N,N,N′,N′-tetraphenyl-benzidine layer has been introduced by spin-coating to engineer the metal–semiconductor interface in the hole-conductor-free perovskite solar cells. The average cell power conversion efficiency (PCE) has been enhanced from 5.26% to 6.26% after the modification and a highest PCE of 6.71% has been achieved. By the aid of electrochemical impedance spectroscopy and dark current analysis, it is revealed that this modification can increase interfacial resistance of CH3NH3PbI3/Au interface and retard electron recombination process in the metal–semiconductor interface.

92 citations


Network Information
Related Topics (5)
Graphene
144.5K papers, 4.9M citations
88% related
Carbon nanotube
109K papers, 3.6M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Thin film
275.5K papers, 4.5M citations
86% related
Oxide
213.4K papers, 3.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023225
2022409
2021631
2020770
2019835
2018780