scispace - formally typeset
Search or ask a question

Showing papers on "Perovskite (structure) published in 2020"


Journal ArticleDOI
TL;DR: This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovSKite solar cells, and possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.
Abstract: With rapid progress in a power conversion efficiency (PCE) to reach 25%, metal halide perovskite-based solar cells became a game-changer in a photovoltaic performance race. Triggered by the development of the solid-state perovskite solar cell in 2012, intense follow-up research works on structure design, materials chemistry, process engineering, and device physics have contributed to the revolutionary evolution of the solid-state perovskite solar cell to be a strong candidate for a next-generation solar energy harvester. The high efficiency in combination with the low cost of materials and processes are the selling points of this cell over commercial silicon or other organic and inorganic solar cells. The characteristic features of perovskite materials may enable further advancement of the PCE beyond those afforded by the silicon solar cells, toward the Shockley-Queisser limit. This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovskite solar cells. Furthermore, possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.

1,116 citations


Journal ArticleDOI
02 Oct 2020-Science
TL;DR: Doping of cesium and methylenediammonium for formamidinium cations decreased lattice strain and increased carrier lifetime and reduced Urbach energy and defect concentration in high-efficiency lead halide perovskite solar cells.
Abstract: High-efficiency lead halide perovskite solar cells (PSCs) have been fabricated with α-phase formamidinium lead iodide (FAPbI3) stabilized with multiple cations. The alloyed cations greatly affect the bandgap, carrier dynamics, and stability, as well as lattice strain that creates unwanted carrier trap sites. We substituted cesium (Cs) and methylenediammonium (MDA) cations in FA sites of FAPbI3 and found that 0.03 mol fraction of both MDA and Cs cations lowered lattice strain, which increased carrier lifetime and reduced Urbach energy and defect concentration. The best-performing PSC exhibited power conversion efficiency >25% under 100 milliwatt per square centimeter AM 1.5G illumination (24.4% certified efficiency). Unencapsulated devices maintained >80% of their initial efficiency after 1300 hours in the dark at 85°C.

799 citations


Journal ArticleDOI
06 Mar 2020-Science
TL;DR: A method for incorporating chloride is reported that allows for fabrication of stable triple-halide perovskites with a band gap of 1.67 electron volts and a factor of 2 increase in photocarrier lifetime and charge-carrier mobility that resulted from enhancing the solubility of chlorine by replacing some of the iodine with bromine to shrink the lattice parameter.
Abstract: Wide–band gap metal halide perovskites are promising semiconductors to pair with silicon in tandem solar cells to pursue the goal of achieving power conversion efficiency (PCE) greater than 30% at low cost. However, wide–band gap perovskite solar cells have been fundamentally limited by photoinduced phase segregation and low open-circuit voltage. We report efficient 1.67–electron volt wide–band gap perovskite top cells using triple-halide alloys (chlorine, bromine, iodine) to tailor the band gap and stabilize the semiconductor under illumination. We show a factor of 2 increase in photocarrier lifetime and charge-carrier mobility that resulted from enhancing the solubility of chlorine by replacing some of the iodine with bromine to shrink the lattice parameter. We observed a suppression of light-induced phase segregation in films even at 100-sun illumination intensity and less than 4% degradation in semitransparent top cells after 1000 hours of maximum power point (MPP) operation at 60°C. By integrating these top cells with silicon bottom cells, we achieved a PCE of 27% in two-terminal monolithic tandems with an area of 1 square centimeter.

576 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss solution-based and vapour-phase coating methods for the fabrication of large-area perovskite films, examine the progress in performance and the parameters affecting the properties of large area coatings.
Abstract: Since the report in 2012 of a solid-state perovskite solar cell (PSC) with a power-conversion efficiency (PCE) of 9.7% and a stability of 500 h, intensive efforts have been made to increase the certified PCE, reaching 25.2% in 2019. The PCE of PSCs now exceeds that of conventional thin-film solar-cell technologies, and the rate at which this increase has been achieved is unprecedented in the history of photovoltaics. Moreover, the development of moisture-stable and heat-stable materials has increased the stability of PSCs. Small-area devices ( 100 cm2) substrates required for commercialization. Thus, materials and methods need to be developed for coating large-area PSCs. In this Review, we discuss solution-based and vapour-phase coating methods for the fabrication of large-area perovskite films, examine the progress in performance and the parameters affecting the properties of large-area coatings, and provide an overview of the methodologies for achieving high-efficiency perovskite solar modules. The scalable fabrication of perovskite solar cells and solar modules requires the development of new materials and coating methods. In this Review, we discuss solution-based and vapour-phase coating methods for large-area perovskite films and examine the progress in performance and the parameters affecting large-area coatings.

460 citations


Journal ArticleDOI
06 Mar 2020-Science
TL;DR: Tandems that combine solution-processed micrometer-thick perovskite top cells with fully textured silicon heterojunction bottom cells are reported, which presents the possibility of overcoming the single-junction Shockley-Queisser limit in photovoltaics.
Abstract: Stacking solar cells with decreasing band gaps to form tandems presents the possibility of overcoming the single-junction Shockley-Queisser limit in photovoltaics. The rapid development of solution-processed perovskites has brought perovskite single-junction efficiencies >20%. However, this process has yet to enable monolithic integration with industry-relevant textured crystalline silicon solar cells. We report tandems that combine solution-processed micrometer-thick perovskite top cells with fully textured silicon heterojunction bottom cells. To overcome the charge-collection challenges in micrometer-thick perovskites, we enhanced threefold the depletion width at the bases of silicon pyramids. Moreover, by anchoring a self-limiting passivant (1-butanethiol) on the perovskite surfaces, we enhanced the diffusion length and further suppressed phase segregation. These combined enhancements enabled an independently certified power conversion efficiency of 25.7% for perovskite-silicon tandem solar cells. These devices exhibited negligible performance loss after a 400-hour thermal stability test at 85°C and also after 400 hours under maximum power point tracking at 40°C.

460 citations


Journal ArticleDOI
TL;DR: Perovskite QD resurfacing is reported to achieve a bipolar shell consisting of an inner anion shell, and an outer shell comprised of cations and polar solvent molecules, to fabricate blue and green light-emitting diodes with improved mobility.
Abstract: Colloidal quantum dot (QD) solids are emerging semiconductors that have been actively explored in fundamental studies of charge transport1 and for applications in optoelectronics2. Forming high-quality QD solids—necessary for device fabrication—requires substitution of the long organic ligands used for synthesis with short ligands that provide increased QD coupling and improved charge transport3. However, in perovskite QDs, the polar solvents used to carry out the ligand exchange decompose the highly ionic perovskites4. Here we report perovskite QD resurfacing to achieve a bipolar shell consisting of an inner anion shell, and an outer shell comprised of cations and polar solvent molecules. The outer shell is electrostatically adsorbed to the negatively charged inner shell. This approach produces strongly confined perovskite QD solids that feature improved carrier mobility (≥0.01 cm2 V−1 s−1) and reduced trap density relative to previously reported low-dimensional perovskites. Blue-emitting QD films exhibit photoluminescence quantum yields exceeding 90%. By exploiting the improved mobility, we have been able to fabricate CsPbBr3 QD-based efficient blue and green light-emitting diodes. Blue devices with reduced trap density have an external quantum efficiency of 12.3%; the green devices achieve an external quantum efficiency of 22%. A solution-based ligand-exchange strategy enables the realization of close-packed quantum dot solid films with near-unity photoluminescence quantum yield and high charge carrier mobility.

451 citations



Journal ArticleDOI
02 Oct 2020-Science
TL;DR: A deposition method using methylammonium thiocyanate vapor treatment to convert δ-FAPbI3 to the desired pure α-phase below the thermodynamic phase-transition temperature is shown.
Abstract: Mixtures of cations or halides with FAPbI3 (where FA is formamidinium) lead to high efficiency in perovskite solar cells (PSCs) but also to blue-shifted absorption and long-term stability issues caused by loss of volatile methylammonium (MA) and phase segregation. We report a deposition method using MA thiocyanate (MASCN) or FASCN vapor treatment to convert yellow δ-FAPbI3 perovskite films to the desired pure α-phase. NMR quantifies MA incorporation into the framework. Molecular dynamics simulations show that SCN- anions promote the formation and stabilization of α-FAPbI3 below the thermodynamic phase-transition temperature. We used these low-defect-density α-FAPbI3 films to make PSCs with >23% power-conversion efficiency and long-term operational and thermal stability, as well as a low (330 millivolts) open-circuit voltage loss and a low (0.75 volt) turn-on voltage of electroluminescence.

446 citations



Journal ArticleDOI
23 Apr 2020-Nature
TL;DR: This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems—that is, from perovskite-derived complex oxides to fluorite-structure binary oxides—in which ‘reverse’ size effects counterintuitively stabilize polar symmetry in the ultrathin regime.
Abstract: Ultrathin ferroelectric materials could potentially enable low-power logic and nonvolatile memories1,2. As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides—the archetypal ferroelectric system3. Perovskites, however, have so far proved unsuitable for thickness scaling and integration with modern semiconductor processes4. Here we report ferroelectricity in ultrathin doped hafnium oxide (HfO2), a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to a thickness of one nanometre. Our results indicate not only the absence of a ferroelectric critical thickness but also enhanced polar distortions as film thickness is reduced, unlike in perovskite ferroelectrics. This approach to enhancing ferroelectricity in ultrathin layers could provide a route towards polarization-driven memories and ferroelectric-based advanced transistors. This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems—that is, from perovskite-derived complex oxides to fluorite-structure binary oxides—in which ‘reverse’ size effects counterintuitively stabilize polar symmetry in the ultrathin regime. Enhanced switchable ferroelectric polarization is achieved in doped hafnium oxide films grown directly onto silicon using low-temperature atomic layer deposition, even at thicknesses of just one nanometre.

431 citations


Journal ArticleDOI
20 Mar 2020-Science
TL;DR: In this article, the trap densities in single crystals varied by five orders of magnitude, with the lowest value of 2 × 1011 per cubic centimeter and most of the deep traps located at crystal surfaces.
Abstract: We report the profiling of spatial and energetic distributions of trap states in metal halide perovskite single-crystalline and polycrystalline solar cells. The trap densities in single crystals varied by five orders of magnitude, with a lowest value of 2 × 1011 per cubic centimeter and most of the deep traps located at crystal surfaces. The charge trap densities of all depths of the interfaces of the polycrystalline films were one to two orders of magnitude greater than that of the film interior, and the trap density at the film interior was still two to three orders of magnitude greater than that in high-quality single crystals. Suprisingly, after surface passivation, most deep traps were detected near the interface of perovskites and hole transport layers, where a large density of nanocrystals were embedded, limiting the efficiency of solar cells.

Journal ArticleDOI
TL;DR: Xiao et al. as mentioned in this paper used strongly reductive surface-anchoring zwitterionic molecules to suppress Sn2+ oxidation and passivate defects at the grain surfaces in mixed lead-tin perovskite films, enabling an efficiency of 21.7% (certified 20.7%).
Abstract: Monolithic all-perovskite tandem solar cells offer an avenue to increase power conversion efficiency beyond the limits of single-junction cells. It is an important priority to unite efficiency, uniformity and stability, yet this has proven challenging because of high trap density and ready oxidation in narrow-bandgap mixed lead–tin perovskite subcells. Here we report simultaneous enhancements in the efficiency, uniformity and stability of narrow-bandgap subcells using strongly reductive surface-anchoring zwitterionic molecules. The zwitterionic antioxidant inhibits Sn2+ oxidation and passivates defects at the grain surfaces in mixed lead–tin perovskite films, enabling an efficiency of 21.7% (certified 20.7%) for single-junction solar cells. We further obtain a certified efficiency of 24.2% in 1-cm2-area all-perovskite tandem cells and in-lab power conversion efficiencies of 25.6% and 21.4% for 0.049 cm2 and 12 cm2 devices, respectively. The encapsulated tandem devices retain 88% of their initial performance following 500 hours of operation at a device temperature of 54–60 °C under one-sun illumination in ambient conditions. Ensuring both stability and efficiency in mixed lead–tin perovskite solar cells is crucial to the development of all-perovskite tandems. Xiao et al. use an antioxidant zwitterionic molecule to suppress tin oxidation thus enabling large-area tandem cells with 24.2% efficiency and operational stability over 500 hours.

Journal ArticleDOI
TL;DR: Indene-C 60 bisadduct with higher energy level is utilized as an electron transporting material for tin perovskite solar cells and a fullerene derivative is used to greatly suppress carrier interface recombination and obtain record high cell efficiency of 12%.
Abstract: Tin perovskite is rising as a promising candidate to address the toxicity and theoretical efficiency limitation of lead perovskite. However, the voltage and efficiency of tin perovskite solar cells are much lower than lead counterparts. Herein, indene-C60 bisadduct with higher energy level is utilized as an electron transporting material for tin perovskite solar cells. It suppresses carrier concentration increase caused by remote doping, which significantly reduces interface carriers recombination. Moreover, indene-C60 bisadduct increases the maximum attainable photovoltage of the device. As a result, the use of indene-C60 bisadduct brings unprecedentedly high voltage of 0.94 V, which is over 50% higher than that of 0.6 V for device based on [6,6]-phenyl-C61-butyric acid methyl ester. The device shows a record power conversion efficiency of 12.4% reproduced in an accredited independent photovoltaic testing lab.

Journal ArticleDOI
TL;DR: In this article, a 2D Ruddlesden-Popper phase (2DRP) perovskite solar cells with improved photostability and environmental stability compared with their three-dimensional (3D) counterparts are presented.
Abstract: Two-dimensional Ruddlesden–Popper phase (2DRP) perovskites are known to exhibit improved photostability and environmental stability compared with their three-dimensional (3D) counterparts. However, fundamental questions remain over the interaction between the bulky alkylammoniums and the 2DRP perovskite framework. Here, we unambiguously demonstrate that a sulfur–sulfur interaction is present for a new bulky alkylammonium, 2-(methylthio)ethylamine hydrochloride (MTEACl). In addition to a weaker van der Waals interaction, the interaction between sulfur atoms in two MTEA molecules enables a (MTEA)2(MA)4Pb5I16 (n = 5) perovskite framework with enhanced charge transport and stabilization. The result is 2DRP perovskite solar cells with significantly improved efficiency and stability. Cells with a power conversion efficiency as high as 18.06% (17.8% certified) are achieved, along with moisture tolerance for up to 1,512 h (under 70% humidity conditions), thermal stability for 375 h (at 85 °C) and stability under continuous light stress (85% of the initial efficiency retained over 1,000 h of operation at the maximum power point). Two-dimensional perovskite solar cells have been engineered to be robust against moisture, high temperatures and light stress.

Journal ArticleDOI
03 Jul 2020-Science
TL;DR: High-resilience positive-intrinsic-negative perovskite solar cells are demonstrated by incorporating a piperidinium-based ionic compound into the formamid inium-cesium lead-trihalide perovSKite absorber, and detailed degradation routes that contribute to the failure of aged cells are revealed.
Abstract: Longevity has been a long-standing concern for hybrid perovskite photovoltaics. We demonstrate high-resilience positive-intrinsic-negative perovskite solar cells by incorporating a piperidinium-based ionic compound into the formamidinium-cesium lead-trihalide perovskite absorber. With the bandgap tuned to be well suited for perovskite-on-silicon tandem cells, this piperidinium additive enhances the open-circuit voltage and cell efficiency. This additive also retards compositional segregation into impurity phases and pinhole formation in the perovskite absorber layer during aggressive aging. Under full-spectrum simulated sunlight in ambient atmosphere, our unencapsulated and encapsulated cells retain 80 and 95% of their peak and post-burn-in efficiencies for 1010 and 1200 hours at 60° and 85°C, respectively. Our analysis reveals detailed degradation routes that contribute to the failure of aged cells.

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent research advances on understanding the role of oxygen vacancies of the ABO3 perovskite oxides in catalyzing the oxygen reduction reaction (ORR).
Abstract: The oxygen reduction reaction (ORR) is one of the most important electrochemical reactions in energy conversion and storage technologies, such as fuel cells and metal–air batteries. However, the sluggish kinetics of the ORR is a key factor limiting the performance of these energy storage and conversion devices. Perovskite oxides are a promising family of electrocatalysts for the ORR because of their unique physical and chemical properties, such as variable crystal structure and non-stoichiometric chemistry. Studies have shown that the catalytic properties of perovskite oxides in the ORR are largely related to oxygen vacancies, which alter their electronic and crystal structures and surface chemistry. This review summarizes recent research advances on understanding the role of oxygen vacancies of the ABO3 perovskite oxides in catalyzing the ORR. With a brief introduction of perovskite oxides, approaches to creating oxygen vacancies in the ABO3 perovskite oxides and the role of oxygen vacancies in improving their catalytic performance for the ORR are discussed. Research perspectives in this important area are highlighted.

Journal ArticleDOI
10 Apr 2020-Science
TL;DR: It is shown that by using phenethylammonium as a two-dimensional additive, along with iodine and thiocyanate, bromine-rich perovskite films can be stabilized and, by doing so, improve the carrier mobility and stability in silicon tandem solar cells.
Abstract: Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.

Journal ArticleDOI
TL;DR: In this article, an effective oleic acid (OA) ligand-assisted cation exchange strategy was proposed for controllable synthesis of Cs1−xFAxPbI3 QDs across the whole composition range.
Abstract: The mixed caesium and formamidinium lead triiodide perovskite system (Cs1−xFAxPbI3) in the form of quantum dots (QDs) offers a pathway towards stable perovskite-based photovoltaics and optoelectronics. However, it remains challenging to synthesize such multinary QDs with desirable properties for high-performance QD solar cells (QDSCs). Here we report an effective oleic acid (OA) ligand-assisted cation-exchange strategy that allows controllable synthesis of Cs1−xFAxPbI3 QDs across the whole composition range (x = 0–1), which is inaccessible in large-grain polycrystalline thin films. In an OA-rich environment, the cross-exchange of cations is facilitated, enabling rapid formation of Cs1−xFAxPbI3 QDs with reduced defect density. The hero Cs0.5FA0.5PbI3 QDSC achieves a certified record power conversion efficiency (PCE) of 16.6% with negligible hysteresis. We further demonstrate that the QD devices exhibit substantially enhanced photostability compared with their thin-film counterparts because of suppressed phase segregation, and they retain 94% of the original PCE under continuous 1-sun illumination for 600 h.

Journal ArticleDOI
TL;DR: In this article, the development of green, sustainable, and economical chemical processes represents a cornerstone challenge within chemistry today, which is the goal of our work as well as many others.
Abstract: The development of green, sustainable, and economical chemical processes represents a cornerstone challenge within chemistry today. Semiconductor heterogeneous photocatalysis is currently utilized ...

Journal ArticleDOI
08 Jan 2020-Nature
TL;DR: Strain engineering of α-formamidinium lead iodide (α-FAPbI 3) is investigated using both experimental techniques and theoretical calculations, and it is demonstrated that a compressive strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of α -FAPBI 3.
Abstract: Strain engineering is a powerful tool with which to enhance semiconductor device performance1,2. Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties3–5. Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization6–8, electrostriction9, annealing10–12, van der Waals force13, thermal expansion mismatch14, and heat-induced substrate phase transition15, the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of α-formamidinium lead iodide (α-FAPbI3) using both experimental techniques and theoretical calculations. By tailoring the substrate composition—and therefore its lattice parameter—a compressive strain as high as 2.4 per cent is applied to the epitaxial α-FAPbI3 thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of α-FAPbI3. Strained epitaxy is also shown to have a substantial stabilization effect on the α-FAPbI3 phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an α-FAPbI3-based photodetector. A method of deposition of mixed-cation hybrid perovskite films as lattice-mismatched substrates for an α-FAPbI3 film is described, giving strains of up to 2.4 per cent while also stabilizing the metastable α-FAPbI3 phase for several hundred days.

Journal ArticleDOI
TL;DR: The use of solar energy to catalyze the photo-driven processes has attracted tremendous attention from the scientific community because of its great potential to address energy and environmental is....
Abstract: The use of solar energy to catalyze the photo-driven processes has attracted tremendous attention from the scientific community because of its great potential to address energy and environmental is...

Journal ArticleDOI
TL;DR: The studies reveal that the nitrile (C-N) groups on the small molecule effectively reduce the trap density of the perovskite film and thus significantly suppresses the non-radiative recombination in the derived PVSC by passivating the Pb-exposed surface, resulting in an improved open-circuit voltage from 1.10 V to 1.16”V after passivation.
Abstract: All-inorganic perovskite solar cells (PVSCs) have drawn increasing attention because of their outstanding thermal stability. However, their performance is still inferior than the typical organic-inorganic counterparts, especially for the devices with p-i-n configuration. Herein, we successfully employ a Lewis base small molecule to passivate the inorganic perovskite film, and its derived PVSCs achieved a champion efficiency of 16.1% and a certificated efficiency of 15.6% with improved photostability, representing the most efficient inverted all-inorganic PVSCs to date. Our studies reveal that the nitrile (C-N) groups on the small molecule effectively reduce the trap density of the perovskite film and thus significantly suppresses the non-radiative recombination in the derived PVSC by passivating the Pb-exposed surface, resulting in an improved open-circuit voltage from 1.10 V to 1.16 V after passivation. This work provides an insight in the design of functional interlayers for improving efficiencies and stability of all-inorganic PVSCs. There has been a hot competition to optimize the device performance for all-inorganic perovskite solar cells. Here Wang et al. employ a Lewis base molecule to suppresses the non-radiative recombination in the inverted device and achieve a champion efficiency of 16.1%.

Journal ArticleDOI
03 Sep 2020-Nature
TL;DR: The results indicate that singlet-triplet exciton annihilation is a possible intrinsic mechanism causing lasing death and this work achieves stable green quasi-2D perovskite lasers under CW optical pumping in air at room temperature.
Abstract: Organic–inorganic lead halide quasi-two-dimensional (2D) perovskites are promising gain media for lasing applications because of their low cost, tunable colour, excellent stability and solution processability1–3. Optically pumped continuous-wave (CW) lasing is highly desired for practical applications in high-density integrated optoelectronics devices and constitutes a key step towards electrically pumped lasers4–6. However, CW lasing has not yet been realized at room temperature because of the ‘lasing death’ phenomenon (the abrupt termination of lasing under CW optical pumping), the cause of which remains unknown. Here we study lead halide-based quasi-2D perovskite films with different organic cations and observe that long-lived triplet excitons considerably impede population inversion during amplified spontaneous emission and optically pumped pulsed and CW lasing. Our results indicate that singlet–triplet exciton annihilation is a possible intrinsic mechanism causing lasing death. By using a distributed-feedback cavity with a high quality factor and applying triplet management strategies, we achieve stable green quasi-2D perovskite lasers under CW optical pumping in air at room temperature. We expect that our findings will pave the way to the realization of future current-injection perovskite lasers. Lead halide-based quasi-two-dimensional perovskite films with different organic cations are used to create stable green lasers under continuous-wave optical pumping in air at room temperature.

Journal ArticleDOI
TL;DR: In this article, the A site cation of tin halide perovskite solar cells was replaced with formamidinium cation to achieve a tolerance factor of nearly 1.

Journal ArticleDOI
19 Jun 2020-Science
TL;DR: A low-cost polymer/glass stack encapsulation scheme that enables PSCs to pass the demanding International Electrotechnical Commission (IEC) 61215:2016 Damp Heat and Humidity Freeze tests is reported.
Abstract: INTRODUCTION Although advances in materials and processing have led to remarkable advancements in the energy conversion efficiency of perovskite solar cells (PSCs), increasing from 3.8% to 25.2% in only 10 years, these solar cells cannot become commercially viable unless their underperforming durability is improved. The instability of perovskites must be addressed if PSCs are to compete with silicon technology, which currently offers a 25-year performance warranty. Previous approaches to this problem include the use of metal oxide barrier layers and butyl rubber sealants. Here, we report a low-cost polymer/glass stack encapsulation scheme that enables PSCs to pass the demanding International Electrotechnical Commission (IEC) 61215:2016 Damp Heat and Humidity Freeze tests. These tests help to determine whether solar cell modules can withstand the effects of outdoor operating conditions by exposing them to repeated temperature cycling (–40° to 85°C) as well as 85% relative humidity. Our airtight encapsulation scheme prevented moisture ingress. It was also effective in suppressing outgassing of decomposition products, which limits decomposition reactions of organic hybrid PSCs by allowing these reactions to come to equilibrium. The gas compositions were verified by gas chromatography–mass spectrometry (GC-MS). RATIONALE In the GC-MS technique, gas chromatography separates the components in a mixture, and the chemical identity of each component is determined with mass spectrometry. We could directly identify with high specificity the decomposition products of multi-cation perovskite precursors, of unencapsulated perovskite test structures, and of encapsulated full cells at elevated temperatures. The results allowed us to identify thermal degradation pathways by determining the outgassing products of mixed-cation perovskites during heating. We then used GC-MS to evaluate the effectiveness of different packaging techniques developed for PSCs. The packaging schemes were a polyisobutylene (PIB)–based polymer blanket encapsulation, a polyolefin-based blanket encapsulation, and a PIB edge seal. These packaging layers were then capped by a glass cover. For the edge seal, the decomposition gases inside the cell were sampled with a syringe. The feasibilities of these packaging techniques were also demonstrated by IEC photovoltaic module standard Damp Heat and Humidity Freeze testing. RESULTS Signature decomposition products such as CH3I, CH3Br, and NH3 were identified and decomposition pathways were proposed for CH3NH3I (MAI), HC(NH2)2I (FAI), CH3NH3Br (MABr), and mixed-cation and mixed-halide (FAI)0.85 + (MABr)0.15 perovskite precursors, including their secondary decomposition reactions at 350°, 140°, and 85°C. The GC-MS results confirmed that the Br-containing precursor was less prone to thermal decomposition than an I-containing precursor. Also, CsFAMA cells were found to outgas one-fifth as much decomposition product as their FAMA counterparts, which indicated that the Cs-containing cells had better thermal stability. Although the decomposition of FAI is reversible, the mixing of MA with FA precursors caused decomposition products to participate in the secondary reaction that was irreversible. This finding confirmed the disadvantage of mixing of MA with FA perovskite through the reduction in chemical stability. The blanket-encapsulated PSCs sustained no efficiency degradation after 1800 hours of Damp Heat testing or 75 cycles of Humidity Freeze testing. CONCLUSION GC-MS identified signature volatile products of the decomposition of organic hybrid perovskites under thermal stress, thereby informing decomposition pathways. The findings are important for developing potential cell-stabilizing strategies, given that cells in the field typically experience high operating temperatures. In addition, results of GC-MS confirm that the low-cost pressure-tight encapsulation we developed is effective in suppressing such outgassing and therefore decomposition reactions of PSCs. This encapsulation scheme is the simplest of all for perovskite cells to pass IEC photovoltaic module standard tests. Our approach can be applied to evaluating the effectiveness of other packaging approaches, as well as testing the effectiveness of coatings and material compositions aimed at limiting light and thermal degradation.


Journal ArticleDOI
TL;DR: By using a thermal expandable hole transporting layer to compensate the strain and result in most stable wide-bandgap perovskite solar cells so far, Xue et al. find that compressive strain increases the activation energy for ion migration, improving the stability of perovSKite films.
Abstract: Thermally-induced tensile strain that remains in perovskite films following annealing results in increased ion migration and is a known factor in the instability of these materials. Previously-reported strain regulation methods for perovskite solar cells (PSCs) have utilized substrates with high thermal expansion coefficients that limits the processing temperature of perovskites and compromises power conversion efficiency. Here we compensate residual tensile strain by introducing an external compressive strain from the hole-transport layer. By using a hole-transport layer with high thermal expansion coefficient, we compensate the tensile strain in PSCs by elevating the processing temperature of hole-transport layer. We find that compressive strain increases the activation energy for ion migration, improving the stability of perovskite films. We achieve an efficiency of 16.4% for compressively-strained PSCs; and these retain 96% of their initial efficiencies after heating at 85 °C for 1000 hours—the most stable wide-bandgap perovskites (above 1.75 eV) reported so far. Remnant tensile strain in the perovskite films induced in the thermal annealing step is a known source of material and device instabilities. Here Xue et al. use a thermal expandable hole transporting layer to compensate the strain and result in most stable wide-bandgap perovskite solar cells so far.

Journal ArticleDOI
TL;DR: In this paper, it is shown that it is possible to write on demand 3D patterns of perovskite quantum dots (QDs) inside a transparent glass material using a femtosecond laser.
Abstract: The three-dimensional (3D) patterning of semiconductors is potentially important for exploring new functionalities and applications in optoelectronics1,2. Here, we show that it is possible to write on demand 3D patterns of perovskite quantum dots (QDs) inside a transparent glass material using a femtosecond laser. By utilizing the inherent ionic nature and low formation energy of perovskite, highly luminescent CsPbBr3 QDs can be reversibly fabricated in situ and decomposed through femtosecond laser irradiation and thermal annealing. This pattern of writing and erasing can be repeated for many cycles, and the luminescent QDs are well protected by the inorganic glass matrix, resulting in stable perovskite QDs with potential applications such as high-capacity optical data storage, information encryption and 3D artwork. Luminescent CsPbBr3 quantum dots can be written into glass using femtosecond laser pulses and thermal annealing, and erased by further femtosecond laser irradiation. The resulting quantum dot patterns could prove useful for data storage, decoration or security purposes.