scispace - formally typeset
Search or ask a question
Topic

Perovskite (structure)

About: Perovskite (structure) is a research topic. Over the lifetime, 51482 publications have been published within this topic receiving 1541750 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the open-circuit voltage of methylammonium lead iodide perovskite solar cells and showed that without a hole-transport layer, non-radiative recombination is strongly enhanced, which reduces the open circuit voltage.
Abstract: The remarkably high open-circuit voltage of methylammonium lead iodide perovskite solar cells is investigated. Both the theoretical maximum and the real open-circuit voltage are predicted from electroluminescence and photovoltaic external quantum efficiency spectra. Radiative and non-radiative recombination are quantified, where a source of non-radiative recombination is found in the mesoscopic structure, independent of the Al2O3 or TiO2 scaffold. Without a hole-transport layer, non-radiative recombination is strongly enhanced, which reduces the open-circuit voltage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

428 citations

Journal ArticleDOI
TL;DR: This study anchored CsPbBr3 QDs on NHx -rich porous g-C3 N4 nanosheets (PCN) to construct the composite photocatalysts via N-Br chemical bonding to open up new possibilities of using halide perovskite QDs for photoc atalytic application.
Abstract: Halide perovskite quantum dots (QDs) have great potential in photocatalytic applications if their low charge transportation efficiency and chemical instability can be overcome To circumvent these obstacles, we anchored CsPbBr3 QDs (CPB) on NHx -rich porous g-C3 N4 nanosheets (PCN) to construct the composite photocatalysts via N-Br chemical bonding The 20 CPB-PCN (20 wt % of QDs) photocatalyst exhibits good stability and an outstanding yield of 149 μmol h-1 g-1 in acetonitrile/water for photocatalytic reduction of CO2 to CO under visible light irradiation, which is around 15 times higher than that of CsPbBr3 QDs This study opens up new possibilities of using halide perovskite QDs for photocatalytic application

428 citations

Journal ArticleDOI
TL;DR: This work investigated in detail the cryogenic steady state photoluminescence properties of a prototypical hybrid perovskite CH3NH3PbI3-xClx and revealed an abnormal blue-shift of the band gap in the high-temperature tetragonal phase.
Abstract: Organometal halide perovskites have recently attracted tremendous attention due to their potential for photovoltaic applications, and they are also considered as promising materials in light emitting and lasing devices. In this work, we investigated in detail the cryogenic steady state photoluminescence properties of a prototypical hybrid perovskite CH3NH3PbI3−xClx. The evolution of the characteristics of two excitonic peaks coincides with the structural phase transition around 160 K. Our results further revealed an exciton binding energy of 62.3 ± 8.9 meV and an optical phonon energy of 25.3 ± 5.2 meV, along with an abnormal blue-shift of the band gap in the high-temperature tetragonal phase.

428 citations

Journal ArticleDOI
19 Apr 2016-ACS Nano
TL;DR: Flexible nonvolatile memory based on the perovskite layer shows reproducible and reliable memory characteristics in terms of program/erase operations, data retention, and endurance properties.
Abstract: Active research has been done on hybrid organic–inorganic perovskite materials for application to solar cells with high power conversion efficiency. However, this material often shows hysteresis, which is undesirable, shift in the current–voltage curve. The hysteresis may come from formation of defects and their movement in perovskite materials. Here, we utilize the defects in perovskite materials to be used in memory operations. We demonstrate flexible nonvolatile memory devices based on hybrid organic–inorganic perovskite as the resistive switching layer on a plastic substrate. A uniform perovskite layer is formed on a transparent electrode-coated plastic substrate by solvent engineering. Flexible nonvolatile memory based on the perovskite layer shows reproducible and reliable memory characteristics in terms of program/erase operations, data retention, and endurance properties. The memory devices also show good mechanical flexibility. It is suggested that resistive switching is done by migration of vaca...

427 citations

Journal ArticleDOI
TL;DR: A new structural design of hole-transporting material, Trux-OMeTAD, which consists of a C3h Truxene-core with arylamine terminals and hexyl side-chains that exhibits excellent hole mobility and desired surface energy to the perovskite uplayer.
Abstract: Herein we present a new structural design of hole-transporting material, Trux-OMeTAD, which consists of a C3h Truxene-core with arylamine terminals and hexyl side-chains. This planar, rigid, and fully conjugated molecule exhibits excellent hole mobility and desired surface energy to the perovskite uplayer. Perovskite solar cells fabricated using the p-i-n architecture with Trux-OMeTAD as the p-layer, show a high PCE of 18.6% with minimal hysteresis.

426 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
93% related
Oxide
213.4K papers, 3.6M citations
93% related
Thin film
275.5K papers, 4.5M citations
93% related
Graphene
144.5K papers, 4.9M citations
92% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,193
20229,857
20216,144
20205,859
20195,498
20184,741