scispace - formally typeset
Search or ask a question
Topic

Perovskite (structure)

About: Perovskite (structure) is a research topic. Over the lifetime, 51482 publications have been published within this topic receiving 1541750 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the piezoelectric and dielectric constants in different crystal orientations of the lead zirconate titanate (PZT) have been phenomenologically calculated for the compositions near the morphotropic phase boundary at room temperature.
Abstract: The piezoelectric and dielectric constants in different crystal orientations of the lead zirconate titanate (PZT) have been phenomenologically calculated for the compositions near the morphotropic phase boundary at room temperature. For a tetragonal PZT, the effective piezoelectric constant d33 monotonously decreases as the crystal cutting angle from the spontaneous polarization direction [001] increases. However, for a rhombohedral PZT, the effective piezoelectric constant d33[001]// along the perovskite [001] direction was found to be much larger than those along the spontaneous polarization direction [111]. This crystal orientation-related enhancement is emphasized as the composition approaches the morphotropic phase boundary. This suggests that by adopting the perovskite [001] orientation with a rhombohedral composition near the morphotropic phase boundary, the piezoelectric constant d33 for PZT can be greatly enhanced.

393 citations

Journal ArticleDOI
TL;DR: A new type of compact layer free bilayer perovskite solar cell is reported and it is conclusively demonstrated that the ETL is not a prerequisite for obtaining excellent device efficiencies.
Abstract: The recent breakthrough of organometal halide perovskites as the light harvesting layer in photovoltaic devices has led to power conversion efficiencies of over 16%. To date, most perovskite solar cells have adopted a structure in which the perovskite light absorber is placed between carrier-selective electron- and hole-transport layers (ETLs and HTLs). Here we report a new type of compact layer free bilayer perovskite solar cell and conclusively demonstrate that the ETL is not a prerequisite for obtaining excellent device efficiencies. We obtained power conversion efficiencies of up to 11.6% and 13.5% when using poly(3-hexylthiophene) and 2,2′,7,7′-tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9′-spirobifluorene, respectively, as the hole-transport material. This performance is very comparable to that obtained with the use of a ZnO ETL. Impedance spectroscopy suggests that while eliminating the ZnO leads to an increase in contact resistance, this is offset by a substantial decrease in surface recombination.

393 citations

Journal ArticleDOI
TL;DR: The addition of Br in the perovskite structure was demonstrated to improve slightly the lifetime of the devices and the efficiencies of all devices tested remained at least at the 80% of the initial value 1 month after their preparation.
Abstract: We report on the preparation of a series of solution-processed perovskite solar cells based on methylammonium (MA) lead halide derivatives, MAPbX3, which show tunable optical properties depending on the nature and ratio of the halides employed (X = Cl, Br, and I). Devices have been prepared with different cell architecture, thin film, and mesoporous scaffold (TiO2 and Al2O3). We have analyzed different sample sets focusing on the characterization of the charge recombination by means of impedance spectroscopy (IS). On the one hand, our study discloses that the insertion of both Cl and Br in the perovskite lattice reduces the charge recombination rates in the light absorber film, thus determining the open circuit voltage (Voc) of the device. The samples prepared on a mesoporous Al2O3 electrode present lower charge recombination rates than those devices prepared on mesoporous TiO2. Furthermore, the addition of Br in the perovskite structure was demonstrated to improve slightly the lifetime of the devices; in fact, the efficiencies of all devices tested remained at least at the 80% of the initial value 1 month after their preparation. These results highlight the crucial role of the charge-recombination processes on the performance of the perovskite solar cells and pave the way for further progress on this field.

392 citations

Journal ArticleDOI
TL;DR: In this paper, a highly efficient electron transporting layer (ETL) comprising Li-doped SnO2 (Li:SnO2) was developed at low temperature in solution, which facilitated injection and transfer of electrons from the conduction band of the perovskite.

391 citations

Journal ArticleDOI
TL;DR: This research advocates the promise of optoelectronic devices based on organic-inorganic perovskite nanowires with high crystallinity, which have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback.
Abstract: Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic–inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbIxCl3–x perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm2, and a quality fact...

391 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
93% related
Oxide
213.4K papers, 3.6M citations
93% related
Thin film
275.5K papers, 4.5M citations
93% related
Graphene
144.5K papers, 4.9M citations
92% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,193
20229,857
20216,144
20205,859
20195,498
20184,741