scispace - formally typeset
Search or ask a question
Topic

Perovskite (structure)

About: Perovskite (structure) is a research topic. Over the lifetime, 51482 publications have been published within this topic receiving 1541750 citations.


Papers
More filters
Journal ArticleDOI
Jing Cao1, Binghui Wu1, Ruihao Chen1, Youyunqi Wu1, Yong Hui1, Bing-Wei Mao1, Nanfeng Zheng1 
TL;DR: It is demonstrated in this work that the surface passivation of ZnO by a thin layer of MgO and protonated ethanolamine (EA) readily makesZnO as a very promising electron-transporting material for creating hysteresis-free, efficient, and stable PSCs.
Abstract: The power conversion efficiency of perovskite solar cells (PSCs) has ascended from 3.8% to 22.1% in recent years. ZnO has been well-documented as an excellent electron-transport material. However, the poor chemical compatibility between ZnO and organo-metal halide perovskite makes it highly challenging to obtain highly efficient and stable PSCs using ZnO as the electron-transport layer. It is demonstrated in this work that the surface passivation of ZnO by a thin layer of MgO and protonated ethanolamine (EA) readily makes ZnO as a very promising electron-transporting material for creating hysteresis-free, efficient, and stable PSCs. Systematic studies in this work reveal several important roles of the modification: (i) MgO inhibits the interfacial charge recombination, and thus enhances cell performance and stability; (ii) the protonated EA promotes the effective electron transport from perovskite to ZnO, further fully eliminating PSCs hysteresis; (iii) the modification makes ZnO compatible with perovskite, nicely resolving the instability of ZnO/perovskite interface. With all these findings, PSCs with the best efficiency up to 21.1% and no hysteresis are successfully fabricated. PSCs stable in air for more than 300 h are achieved when graphene is used to further encapsulate the cells.

340 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of Cs3Bi2Br9 perovskite QDs with high photoluminescence quantum yield (PLQY) and excellent stability is reported.
Abstract: Lead halide perovskite quantum dots (QDs) possess color-tunable and narrow-band emissions and are very promising for lighting and display applications, but they suffer from lead toxicity and instability. Although lead-free Bi-based and Sn-based perovskite QDs (CsSnX3, Cs2SnX6, and (CH3NH3)3Bi2X9) are reported, they all show low photoluminescence quantum yield (PLQY) and poor stability. Here, the synthesis of Cs3Bi2Br9 perovskite QDs with high PLQY and excellent stability is reported. Via a green and facile process using ethanol as the antisolvent, as-synthesized Cs3Bi2Br9 QDs show a blue emission at 410 nm with a PLQY up to 19.4%. The whole series of Cs3Bi2X9 (X = Cl, Br, and I) QDs by mixing precursors can cover the photoluminescence emission range from 393 to 545 nm. Furthermore, Cs3Bi2Br9 QDs show excellent photostability and moisture stability due to the all-inorganic nature and the surface passivation by BiOBr, which enables the one-pot synthesis of Cs3Bi2Br9 QD/silica composite. A lead-free perovskite white light-emitting diode is fabricated by simply combining the composite of Cs3Bi2Br9 QD/silica with Y3Al5O12 phosphor. As a new member of lead-free perovskite QDs, Cs3Bi2Br9 QDs open up a new route for the fabrication of optoelectronic devices due to their excellent stability and photophysical characteristics.

340 citations

Journal ArticleDOI
TL;DR: In this paper, the capability of sodium hydride as a reducing agent in oxide deintercalation reactions is explored, and a similar infinite-layer phase is prepared by reduction of NdNiO3.
Abstract: The capability of sodium hydride as a reducing agent in oxide deintercalation reactions is explored. The Ni(III) perovskite LaNiO3 can be reduced topotactically to LaNiO2, isostructural with the “infinite layer” cuprates, using solid sodium hydride in a sealed evacuated tube at 190 ≤ T/°C ≤ 210, and a similar infinite-layer phase is prepared by reduction of NdNiO3. Structural characterization indicates the coexistence of incompletely reduced regions, with five-coordinate Ni centers due to the introduction of oxide anions between the NiO23- sheets, giving samples with a refined stoichiometry of LaNiO2.025(3). Neutron powder diffraction and magnetization measurements indicate that the lamellar Ni(I) phase does not show the long-range antiferromagnetic ordering characteristic of isoelectronic Cu(II) oxides. This may be due either to the influence of the interlamellar oxide defect regions or to the reduced covalent mixing of Ni 3d and O 2p levels.

339 citations

Journal ArticleDOI
TL;DR: The large diffusion lengths recurrently measured in perovskite single crystals and films signal small bulk nonradiative recombination flux and locate the dominant carrier recombination processes at the outer interfaces, enabling a comparison among different structures, morphologies, and processing strategies of passivation and buffer layers.
Abstract: The large diffusion lengths recurrently measured in perovskite single crystals and films signal small bulk nonradiative recombination flux and locate the dominant carrier recombination processes at the outer interfaces. Surface recombination largely determines the photovoltaic performance, governing reductions under short-circuit current and open-circuit voltage. Quantification of recombination losses is necessary to reach full understanding of the solar cell operating principles. Complete impedance model is given, which connects capacitive and resistive processes to the electronic kinetics at the interfaces. Carrier collection losses affecting the photocurrent have been determined to equal 1%. Photovoltage loss is linked to the decrease in surface hole density, producing 0.3 V reduction with respect to the ideal radiative limit. Our approach enables a comparison among different structures, morphologies, and processing strategies of passivation and buffer layers.

339 citations

Journal ArticleDOI
15 Mar 2019-Science
TL;DR: A molecular material with piezoelectric properties comparable to the industry-standard ceramic lead zirconate titanate is described, the exceptional properties come from finding a molecular solid-solution series that allows for compositional optimization of the piezoeselectric properties.
Abstract: Piezoelectric materials produce electricity when strained, making them ideal for different types of sensing applications. The most effective piezoelectric materials are ceramic solid solutions in which the piezoelectric effect is optimized at what are termed morphotropic phase boundaries (MPBs). Ceramics are not ideal for a variety of applications owing to some of their mechanical properties. We synthesized piezoelectric materials from a molecular perovskite (TMFM)x(TMCM)1–xCdCl3 solid solution (TMFM, trimethylfluoromethyl ammonium; TMCM, trimethylchloromethyl ammonium, 0 ≤ x ≤ 1), in which the MPB exists between monoclinic and hexagonal phases. We found a composition for which the piezoelectric coefficient d33 is ~1540 picocoulombs per newton, comparable to high-performance piezoelectric ceramics. The material has potential applications for wearable piezoelectric devices.

339 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
93% related
Oxide
213.4K papers, 3.6M citations
93% related
Thin film
275.5K papers, 4.5M citations
93% related
Graphene
144.5K papers, 4.9M citations
92% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,193
20229,857
20216,144
20205,859
20195,498
20184,741