scispace - formally typeset
Search or ask a question
Topic

Perovskite (structure)

About: Perovskite (structure) is a research topic. Over the lifetime, 51482 publications have been published within this topic receiving 1541750 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Local poling experiments and local switching spectroscopy piezoresponse force microscopy demonstrates the enhanced ferroelectricity and domain mobility from a microscopic view and Thermally stimulated depolarization currents analysis reveals the reduced defects and improved ferro electricity in MnO2-doped piezoceramics from a macroscopic view.
Abstract: With growing concern over world environmental problems and increasing legislative restriction on using lead and lead-containing materials, a feasible replacement for lead-based piezoceramics is desperately needed. Herein, we report a large piezoelectric strain (d33*) of 470 pm/V and a high Curie temperature (Tc) of 243 °C in (Na0.5K0.5)NbO3-(Bi0.5Li0.5)TiO3-BaZrO3 lead-free ceramics by doping MnO2. Moreover, excellent temperature stability is also observed from room temperature to 170 °C (430 pm/V at 100 °C and 370 pm/V at 170 °C). Thermally stimulated depolarization currents (TSDC) analysis reveals the reduced defects and improved ferroelectricity in MnO2-doped piezoceramics from a macroscopic view. Local poling experiments and local switching spectroscopy piezoresponse force microscopy (SS-PFM) demonstrates the enhanced ferroelectricity and domain mobility from a microscopic view. Distinct grain growth and improvement in phase angle may also account for the enhancement of piezoelectric properties.

287 citations

Journal ArticleDOI
TL;DR: It is revealed that appropriate FA+ incorporation can effectively control the perovskite crystallization kinetics, which reduces nonradiative recombination centers to acquire high-quality films with a limited nonorientated phase.
Abstract: Halide perovskites with reduced-dimensionality (e.g., quasi-2D, Q-2D) have promising stability while retaining their high performance as compared to their three-dimensional counterpart. Generally, they are obtained in (A1)2(A2)n−1PbnI3n+1 thin films by adjusting A site cations, however, the underlying crystallization kinetics mechanism is less explored. In this manuscript, we employed ternary cations halides perovskite (BA)2(MA,FA)3Pb4I13 Q-2D perovskites as an archetypal model, to understand the principles that link the crystal orientation to the carrier behavior in the polycrystalline film. We reveal that appropriate FA+ incorporation can effectively control the perovskite crystallization kinetics, which reduces nonradiative recombination centers to acquire high-quality films with a limited nonorientated phase. We further developed an in situ photoluminescence technique to observe that the Q-2D phase (n = 2, 3, 4) was formed first followed by the generation of n = ∞ perovskite in Q-2D perovskites. These...

287 citations

Journal ArticleDOI
TL;DR: 2D perovskite nanosheets derived from a combined solution process and vapor phase conversion method are found to have stronger saturable absorption properties with large modulation depth and very low saturation intensity compared with those of bulk perovSKite films.
Abstract: Even though the nonlinear optical effects of solution processed organic–inorganic perovskite films have been studied, the nonlinear optical properties in two-dimensional (2D) perovskites, especially their applications for ultrafast photonics, are largely unexplored. In comparison to bulk perovskite films, 2D perovskite nanosheets with small thicknesses of a few unit cells are more suitable for investigating the intrinsic nonlinear optical properties because bulk recombination of photocarriers and the nonlinear scattering are relatively small. In this research, we systematically investigated the nonlinear optical properties of 2D perovskite nanosheets derived from a combined solution process and vapor phase conversion method. It was found that 2D perovskite nanosheets have stronger saturable absorption properties with large modulation depth and very low saturation intensity compared with those of bulk perovskite films. Using an all dry transfer method, we constructed a new type of saturable absorber device...

287 citations

Journal ArticleDOI
TL;DR: Single-crystalline perovskite nanostructures with reproducible shape have been prepared using a simple, readily scaleable solid-state reaction in the presence of NaCl and a nonionic surfactant.
Abstract: Single-crystalline perovskite nanostructures with reproducible shape have been prepared using a simple, readily scaleable solid-state reaction in the presence of NaCl and a nonionic surfactant. Pristine BaTiO3 nanowires have diameters ranging from 50 to 80 nm with an aspect ratio larger than 25. Single-crystalline SrTiO3 nanocubes with a mean edge length of 80 nm have been produced using a similar procedure.

287 citations

Journal ArticleDOI
20 Jan 2016-ACS Nano
TL;DR: It is shown that at low temperature single colloidal cesium lead halide nanocrystals exhibit stable, narrow-band emission with suppressed blinking and small spectral diffusion, representing a significant acceleration compared to other common quantum emitters.
Abstract: Metal-halide semiconductors with perovskite crystal structure are attractive due to their facile solution processability, and have recently been harnessed very successfully for high-efficiency photovoltaics and bright light sources. Here, we show that at low temperature single colloidal cesium lead halide (CsPbX3, where X = Cl/Br) nanocrystals exhibit stable, narrow-band emission with suppressed blinking and small spectral diffusion. Photon antibunching demonstrates unambiguously nonclassical single-photon emission with radiative decay on the order of 250 ps, representing a significant acceleration compared to other common quantum emitters. High-resolution spectroscopy provides insight into the complex nature of the emission process such as the fine structure and charged exciton dynamics.

287 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
93% related
Oxide
213.4K papers, 3.6M citations
93% related
Thin film
275.5K papers, 4.5M citations
93% related
Graphene
144.5K papers, 4.9M citations
92% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,193
20229,857
20216,144
20205,859
20195,498
20184,741