scispace - formally typeset
Search or ask a question
Topic

Perovskite (structure)

About: Perovskite (structure) is a research topic. Over the lifetime, 51482 publications have been published within this topic receiving 1541750 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, recent developments in understanding and overcoming stability concerns of metal halide perovskite solar cells are highlighted and an overview of possible instability issues due to electrical, atmospheric, heat, and light stresses is provided and the different implications to the most commonly used device architectures are discussed.
Abstract: In recent years, there has been an unprecedented rise in the performance of metal halide perovskite solar cells. They are now in a position to compete on performance with traditional crystalline solar cells, and as such the most pressing questions concern the long term operational stability of this class of solar cell. Here, recent developments in understanding and overcoming stability concerns of metal halide perovskite solar cells are highlighted. An overview of possible instability issues due to electrical, atmospheric, heat, and light stresses is provided and the different implications to the most commonly used device architectures are discussed.

1,006 citations

Journal ArticleDOI
TL;DR: A one-step solution-processing strategy using phosphonic acid ammonium additives that results in efficient perovskite solar cells with enhanced stability, enhancing the material's photovoltaic performance from 8.8 to 16.7% as well as its resistance to moisture.
Abstract: In the past few years, organic-inorganic halide perovskites have rapidly emerged as promising materials for photovoltaic applications, but simultaneously achieving high performance and long-term stability has proved challenging. Here, we show a one-step solution-processing strategy using phosphonic acid ammonium additives that results in efficient perovskite solar cells with enhanced stability. We modify the surface of methylammonium lead triiodide (CH3NH3PbI3) perovskite by spin-coating its precursor solution in the presence of butylphosphonic acid 4-ammonium chloride. Morphological, structural and elemental analyses show that the phosphonic acid ammonium additive acts as a crosslink between neighbouring grains in the perovskite structure, through strong hydrogen bonding of the -PO(OH)2 and -NH3(+) terminal groups to the perovskite surface. The additives facilitate the incorporation of the perovskite within a mesoporous TiO2 scaffold, as well as the growth of a uniform perovskite layer at the surface, enhancing the material's photovoltaic performance from 8.8 to 16.7% as well as its resistance to moisture.

1,000 citations

Journal ArticleDOI
TL;DR: In this paper, a red perovskite quantum dot-based light-emitting devices were fabricated by anion exchange from pristine CsPbBr3 using halide-anion-containing alkyl ammonium and aryl ionium salts.
Abstract: Perovskite quantum dots have significant potential for light-emitting devices because of their high colour purity and colour tunability in the visible spectrum. Here, we report highly efficient red perovskite quantum dot-based light-emitting devices. The quantum dots were fabricated by anion exchange from pristine CsPbBr3 using halide-anion-containing alkyl ammonium and aryl ammonium salts. Anion-exchange quantum dots based on ammonium iodine salts exhibited a strong redshift from green emission to a deep-red emission at 649 nm as well as higher photoluminescence quantum yields. Furthermore, the quantum dot-based light-emitting device with the alkyl ammonium iodine salt exhibited an external quantum efficiency of 21.3% and high colour purity, with Commission Internationale de l’Eclairage coordinates of (0.72, 0.28), while the light-emitting device with the aryl ammonium iodine salt showed an external quantum efficiency of 14.1%. Finally, the operational stability of the latter was 36 times higher because the surface ligand density of the corresponding quantum dots was lower. Perovskite quantum dots (QDs) are synthesized via an anion-exchange process where CsPbBr3 is used to realize a highly efficient red light-emitting diode (LED). The perovskite QD-based LED exhibits the highest external quantum efficiency of more than 20% compared with perovskite LEDs.

999 citations

Journal ArticleDOI
TL;DR: In this paper, the perovskite structure is used to illustrate the relationship of structure to composition, and the history of the fundamental science of structure-to-composition is described.
Abstract: Starting with the history of the fundamental science of the relation of structure to composition delineated completely by Goldschmidt, we use the perovskite structure to illustrate the enormous pow...

998 citations

Journal ArticleDOI
TL;DR: An optimized two-step deposition process allows the formation of uniform layers of metal halide perovskites on textured silicon layers, enabling tandem silicon/perovskite solar cells with improved optical design and efficiency.
Abstract: Tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. State-of-the-art monolithic two-terminal perovskite/silicon tandem devices have so far featured silicon bottom cells that are polished on their front side to be compatible with the perovskite fabrication process. This concession leads to higher potential production costs, higher reflection losses and non-ideal light trapping. To tackle this issue, we developed a top cell deposition process that achieves the conformal growth of multiple compounds with controlled optoelectronic properties directly on the micrometre-sized pyramids of textured monocrystalline silicon. Tandem devices featuring a silicon heterojunction cell and a nanocrystalline silicon recombination junction demonstrate a certified steady-state efficiency of 25.2%. Our optical design yields a current density of 19.5 mA cm−2 thanks to the silicon pyramidal texture and suggests a path for the realization of 30% monolithic perovskite/silicon tandem devices.

990 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
93% related
Oxide
213.4K papers, 3.6M citations
93% related
Thin film
275.5K papers, 4.5M citations
93% related
Graphene
144.5K papers, 4.9M citations
92% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,193
20229,857
20216,144
20205,859
20195,498
20184,741