scispace - formally typeset
Search or ask a question
Topic

Perovskite (structure)

About: Perovskite (structure) is a research topic. Over the lifetime, 51482 publications have been published within this topic receiving 1541750 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated acceptor-doped perovskite-type alkaline earth cerates, zirconates, niobates and titanates by numerical simulations and showed that dynamical hydrogen bonding leads to a local lattice softening, which provides an advantageous environment for high proton-mobility.

825 citations

Journal ArticleDOI
TL;DR: Photovoltaic performances of all-solid state Sn/Pb halide-based perovskite solar cells, which has the following composition: F-doped SnO2 layered glass/compact titania layer/porous titanialayer/CH3NH3SnxPb(1-x)I3/regioregular poly(3-hexylthiophene-2,5-diyl).
Abstract: We report photovoltaic performances of all-solid state Sn/Pb halide-based perovskite solar cells. The cell has the following composition: F-doped SnO2 layered glass/compact titania layer/porous titania layer/CH3NH3SnxPb(1–x)I3/regioregular poly(3-hexylthiophene-2,5-diyl). Sn halide perovskite itself did not show photovoltaic properties. Photovoltaic properties were observed when PbI2 was added in SnI2. The best performance was obtained by using CH3NH3Sn0.5Pb0.5I3 perovskite. 4.18% efficiency with open circuit voltage 0.42 V, fill factor 0.50, and short circuit current 20.04 mA/cm2 are reported. The edge of the incident photon to current efficiency curve reached 1060 nm, which was 260 nm red-shifted compared with that of CH3NH3PbI3 perovskite solar cells.

825 citations

Journal ArticleDOI
TL;DR: These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.
Abstract: We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb–Cl and Pb–Br perovskites emit broadband “cold” and “warm” white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb–Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron–phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.

823 citations

Journal ArticleDOI
TL;DR: The adduct approach proposed in this Account is a very promising methodology to achieve high quality perovskite films with high photovoltaic performance and single crystal growth on the conductive substrate is expected to be possible if the authors kinetically control the elimination of Lewis base in the adduct.
Abstract: ConspectusSince the first report on the long-term durable 9.7% solid-state perovskite solar cell employing methylammonium lead iodide (CH3NH3PbI3), mesoporous TiO2, and 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-MeOTAD) in 2012, following the seed technologies on perovskite-sensitized liquid junction solar cells in 2009 and 2011, a surge of interest has been focused on perovskite solar cells due to superb photovoltaic performance and extremely facile fabrication processes. The power conversion efficiency (PCE) of perovskite solar cells reached 21% in a very short period of time. Such an unprecedentedly high photovoltaic performance is due to the intrinsic optoelectronic property of organolead iodide perovskite material. Moreover, a high dielectric constant, sub-millimeter scale carrier diffusion length, an underlying ferroelectric property, and ion migration behavior can make organolead halide perovskites suitable for multifunctionality. Thus, besides solar cell applicati...

822 citations

Journal ArticleDOI
TL;DR: Perovskite solar cells with power conversion efficiencies exceeding 16% at AM 1.5 G one sun illumination are developed using the black polymorph of formamidnium lead iodide, HC(NH2)2 PbI3, which exhibits photostability and little I-V hysteresis.
Abstract: Perovskite solar cells with power conversion efficiencies exceeding 16% at AM 15 G one sun illumination are developed using the black polymorph of formamidnium lead iodide, HC(NH2)2 PbI3 Compared with CH3 NH3 PbI3 , HC(NH2 )2 PbI3 extends its absoprtion to 840 nm and shows no phase transition between 296 and 423 K Moreover, a solar cell based on HC(NH2 )2 PbI3 exhibits photostability and little I-V hysteresis

817 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
93% related
Oxide
213.4K papers, 3.6M citations
93% related
Thin film
275.5K papers, 4.5M citations
93% related
Graphene
144.5K papers, 4.9M citations
92% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,193
20229,857
20216,144
20205,859
20195,498
20184,741