scispace - formally typeset
Search or ask a question
Topic

Perovskite (structure)

About: Perovskite (structure) is a research topic. Over the lifetime, 51482 publications have been published within this topic receiving 1541750 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is discussed that smaller vacancy concentrations (higher crystallinity) and replacement of MA(+) with larger cation molecules will be essential for suppressing hysteresis as well as preventing aging behavior of PSC photosensitizers.
Abstract: Hysteresis in current–voltage curves has been an important issue for conversion efficiency evaluation and development of perovskite solar cells (PSCs). In this study, we explored the ion diffusion effects in tetragonal CH3NH3PbI3 (MAPbI3) and trigonal (NH2)2CHPbI3 (FAPbI3) by first-principles calculations. The calculated activation energies of the anionic and cationic vacancy migrations clearly show that I– anions in both MAPbI3 and FAPbI3 can easily diffuse with low barriers of ca. 0.45 eV, comparable to that observed in ion-conducting materials. More interestingly, typical MA+ cations and larger FA+ cations both have rather low barriers as well, indicating that the cation molecules can migrate in the perovskite sensitizers when a bias voltage is applied. These results can explain the ion displacement scenario recently proposed by experiments. With the dilute diffusion theory, we discuss that smaller vacancy concentrations (higher crystallinity) and replacement of MA+ with larger cation molecules will be...

555 citations

Journal ArticleDOI
TL;DR: In this article, the perovskite compositions exhibited high electronic and ionic conductivity and substantial reversible weight loss at elevated temperatures as the materials became increasingly oxygen deficient, which resulted in a decrease in the electronic conductivity.
Abstract: Perovskite compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y}Fe{sub y}O{sub 3{minus}{delta}} (M = Sr, Ba, Ca) exhibited high electronic and ionic conductivity. Substantial reversible weight loss was observed at elevated temperatures as the materials became increasingly oxygen deficient. This loss of lattice oxygen at high temperatures, which tended to increase with increasing acceptor content, resulted in a decrease in the electronic conductivity. In an oxygen partial pressure gradient, oxygen flux through dense sintered membranes of these materials was highly dependent on composition and increased with increasing temperature. The increase in oxygen flux with increasing temperature was attributed to increases in the mobility and concentration of lattice oxygen vacancies. The calculated ionic conductivities of some compositions exceeded that of yttria-stabilized zirconia. This material is an attractive candidate for several important applications, including solid oxide fuel cell cathodes.

554 citations

Journal ArticleDOI
TL;DR: Quasielastic neutron scattering measurements show that dipolar CH3NH3+ ions reorientate between the faces, corners or edges of the pseudo-cubic lattice cages in CH3 NH3PbI3 crystals with a room temperature residence time of ∼14 ps, faster than most observed hysteresis.
Abstract: Hysteresis often exists in the characterization of methylammonium lead halide-based solar cells, but is not well understood. Here, the authors use quasielastic neutron scattering to study the dynamics of dipolar organic cations and shed light on the hysteresis behaviour.

553 citations

Journal ArticleDOI
TL;DR: It is shown that unlike nickel particles deposited on perovskite oxides, exsolved analogues are socketed into the parent perovkite, leading to enhanced stability and a significant decrease in the propensity for hydrocarbon coking, indicative of a stronger metal–oxide interface.
Abstract: Metal particles supported on oxide surfaces are used as catalysts for a wide variety of processes in the chemical and energy conversion industries. For catalytic applications, metal particles are generally formed on an oxide support by physical or chemical deposition, or less commonly by exsolution from it. Although fundamentally different, both methods might be assumed to produce morphologically and functionally similar particles. Here we show that unlike nickel particles deposited on perovskite oxides, exsolved analogues are socketed into the parent perovskite, leading to enhanced stability and a significant decrease in the propensity for hydrocarbon coking, indicative of a stronger metal-oxide interface. In addition, we reveal key surface effects and defect interactions critical for future design of exsolution-based perovskite materials for catalytic and other functionalities. This study provides a new dimension for tailoring particle-substrate interactions in the context of increasing interest for emergent interfacial phenomena.

552 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
93% related
Oxide
213.4K papers, 3.6M citations
93% related
Thin film
275.5K papers, 4.5M citations
93% related
Graphene
144.5K papers, 4.9M citations
92% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,193
20229,857
20216,144
20205,859
20195,498
20184,741