scispace - formally typeset
Search or ask a question
Topic

Pertuzumab

About: Pertuzumab is a research topic. Over the lifetime, 1453 publications have been published within this topic receiving 73219 citations. The topic is also known as: 2C4 Antibody & MOAB 2C4.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that it is possible to predict the eventual cardiotoxicity effects of novel approved anticancer drugs early by using in vitro and in vivo approaches, which can also be useful to screen in advance the cardioprotective agents, so as to avoid the onset of unwanted cardiotoxic side effects.
Abstract: Purpose Pertuzumab, a novel anti-epidermal growth factor receptor 2 humanized monoclonal antibody, and trastuzumab-emtansine (TDM1), a novel antibody-drug conjugate made up of trastuzumab covalently linked to the highly potent microtubule inhibitory agent DM1, have been recently approved by the US Food and Drug Administration for increasing the efficiency and safety of breast cancer therapy with trastuzumab. We investigated for the first time the potential cardiotoxic effects of pertuzumab and TDM1, which are not yet fully elucidated, and we tested whether ranolazine could blunt their cardiotoxicity. Methods The cardiotoxic effects were tested in vitro on rat cardiomyoblasts, human fetal cardiomyocytes, adult-like cardiomyocytes, and in vivo on a mouse model. Results All the treated cardiac cell lines were significantly affected by treatment with the tested drugs. Surprisingly, TDM1 showed stronger inhibitory effects on cardiac cells with respect to trastuzumab and pertuzumab by more significantly reducing the cell viability and by changing the morphology of these cells. TDM1 also affected the beating phenotype of adult-like cardiomyocytes in vitro and reduced fractional shortening and ejection fraction in vivo in a mouse model. We also found that ranolazine attenuated not only the cardiotoxic side effects of trastuzumab but also those of pertuzumab and TDM1, when used in combinatorial treatments both in vitro and in vivo, as demonstrated by the recovery of fractional shortening and ejection fraction values in mice pretreated with TDM1. Conclusion We demonstrated that it is possible to predict the eventual cardiotoxic effects of novel approved anticancer drugs early by using in vitro and in vivo approaches, which can also be useful to screen in advance the cardioprotective agents, so as to avoid the onset of unwanted cardiotoxic side effects.

26 citations

Journal ArticleDOI
TL;DR: The data suggest that upregulation of a NRG1-HER3 axis can mediate escape from anti-HER2 therapies, and multitargeted antibody mixtures, such as Pan-HER, can simultaneously remove and/or block targeted ERBB receptor and ligands, thus representing an effective approach against drug-sensitive and -resistant HER2+ cancers.
Abstract: Background Plasticity of the ERBB receptor network has been suggested to cause acquired resistance to anti-human epidermal growth factor receptor 2 (HER2) therapies. Thus, we studied whether a novel approach using an ERBB1-3-neutralizing antibody mixture can block these compensatory mechanisms of resistance. Methods HER2+ cell lines and xenografts (n ≥ 6 mice per group) were treated with the ERBB1-3 antibody mixture Pan-HER, trastuzumab/lapatinib (TL), trastuzumab/pertuzumab (TP), or T-DM1. Downregulation of ERBB receptors was assessed by immunoblot analysis and immunohistochemistry. Paired pre- and post-T-DM1 tumor biopsies from patients (n = 11) with HER2-amplified breast cancer were evaluated for HER2 and P-HER3 expression by immunohistochemistry and/or fluorescence in situ hybridization. ERBB ligands were measured by quantitative reverse transcription polymerase chain reaction. Drug-resistant cells were generated by chronic treatment with T-DM1. All statistical tests were two-sided. Results Treatment with Pan-HER inhibited growth and promoted degradation of ERBB1-3 receptors in a panel of HER2+ breast cancer cells. Compared with TL, TP, and T-DM1, Pan-HER induced a similar antitumor effect against established BT474 and HCC1954 tumors, but was superior to TL against MDA-361 xenografts (TL mean = 2026 mm 3 , SD = 924 mm 3 , vs Pan-HER mean = 565 mm 3 , SD = 499 mm 3 , P = .04). Pan-HER-treated BT474 xenografts did not recur after treatment discontinuation, whereas tumors treated with TL, TP, and T-DM1 did. Post-TP and post-T-DM1 recurrent tumors expressed higher levels of neuregulin-1 (NRG1), HER3 and P-HER3 (all P < .05). Higher levels of P-HER3 protein and NRG1 mRNA were also observed in HER2+ breast cancers progressing after T-DM1 and trastuzumab (NRG1 transcript fold change ± SD; pretreatment = 2, SD = 1.9, vs post-treatment = 11.4, SD = 10.3, P = .04). The HER3-neutralizing antibody LJM716 resensitized the drug-resistant cells to T-DM1, suggesting a causal association between the NRG1-HER3 axis and drug resistance. Finally, Pan-HER treatment inhibited growth of HR6 trastuzumab- and T-DM1-resistant xenografts. Conclusions These data suggest that upregulation of a NRG1-HER3 axis can mediate escape from anti-HER2 therapies. Further, multitargeted antibody mixtures, such as Pan-HER, can simultaneously remove and/or block targeted ERBB receptor and ligands, thus representing an effective approach against drug-sensitive and -resistant HER2+ cancers.

26 citations

Journal ArticleDOI
TL;DR: In this retrospective study of patients with HER2-positive mBC receiving pertuzumab in the first-line setting, most patients were treated with H + P + T, and the safety and PFS were consistent with those observed in the pivotal trial.
Abstract: Pertuzumab (Perjeta®), a HER2/neu receptor antagonist, was approved by the US Food and Drug Administration in June 2012 for use in the first-line setting for patients with HER2-positive metastatic breast cancer (mBC). This retrospective study investigated the clinical and demographic characteristics, treatment patterns, safety, and clinical outcomes for patients with HER2-positive mBC who received pertuzumab in the first-line setting in US community oncology practices. Patients with HER2-positive mBC, who initiated pertuzumab within 60 days of mBC diagnosis between June 2012 and June 2014, followed through December 2014, had ≥2 visits within the McKesson Specialty Health/US Oncology Network, and were not on clinical trials during the study period, were eligible. This study utilized iKnowMed electronic health records, Claims Data Warehouse, and Social Security Death Index. Progression-free survival (PFS) was assessed by Kaplan–Meier methods. A total of 266 patients met the selection criteria. A vast majority of the patients (249/266, 93.6%) received a trastuzumab + pertuzumab + taxane (H + P + T) regimen. The number of patients with prior adjuvant/neoadjuvant therapy was higher than the CLEOPATRA trial, but age (median 57 years) and percentage of visceral disease (74.8%) were similar. The most common adverse events were fatigue (50.8%), diarrhea (44.7%), nausea (35.3%), peripheral neuropathy (33.5%), neutropenia (24.9%), and rash (24.4%). The median PFS was 16.9 months (95% CI 14.2–19.7). In this retrospective study of patients with HER2-positive mBC receiving pertuzumab in the first-line setting, most patients were treated with H + P + T. The safety and PFS of H + P + T were consistent with those observed in the pivotal trial.

26 citations

Journal ArticleDOI
TL;DR: Pertuzumab in combination with FEC-T mostly causes neutropenia, and when added to PTC mostly causes diarrhea, and toxicity is overall well manageable.

25 citations

Journal ArticleDOI
TL;DR: The results indicate that pertuzumab can be a valuable therapeutic agent not only in cancers overexpressing ErbB2 but also in cancers co-expressing ErBB2 and ErbbB3.
Abstract: Overexpression of ErbB2 and ErbB3 is found in several human cancers, and ErbB2-ErbB3 heterodimers are known as the most potent signaling units among ErbB dimers. While ErbB2 probably undergoes weak endocytosis, ErbB3 is readily internalized even in the absence of added ligand and without requirement for kinase activity. Overexpression of ErbB2 has been demonstrated to inhibit epidermal growth factor-induced internalization and degradation of epidermal growth factor receptor. This happens due to epidermal growth factor receptor-ErbB2 dimerization and can be counteracted by the anti-ErbB2 antibody pertuzumab, which binds the dimerization arm of ErbB2. Pertuzumab does also inhibit ErbB2-ErbB3 dimerization, but to what extent this has effect on constitutive and/or ligand-induced downregulation of ErbB3 is not known. In this study, we demonstrate that expression of ErbB2 as such did not block constitutive internalization of ErbB3, but that heregulin-induced degradation of ErbB3 was significantly slowed in cells expressing high levels of ErbB2. Incubation with pertuzumab did, however, counteract this effect. This indicates that the formation of ErbB2-ErbB3 heterodimers inhibits downregulation of ErbB3 and supports the notion that pertuzumab inhibits ErbB2 dimerization. The inhibitory effect of pertuzumab on ligand-induced ErbB2-ErbB3 heterodimerization was confirmed by the observation that pertuzumab inhibited heregulin-induced phosphorylation of ErbB3 in cells expressing ErbB2 and efficiently reduced heregulin-induced downstream signaling in cells expressing low levels of ErbB2. Altogether the results indicate that pertuzumab can be a valuable therapeutic agent not only in cancers overexpressing ErbB2 but also in cancers co-expressing ErbB2 and ErbB3.

25 citations


Network Information
Related Topics (5)
Breast cancer
214.3K papers, 6.4M citations
89% related
Cancer
339.6K papers, 10.9M citations
87% related
Colorectal cancer
71.1K papers, 2.2M citations
84% related
Metastasis
103.6K papers, 3.4M citations
84% related
Carcinogenesis
60.3K papers, 3.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023372
2022307
2021158
2020144
2019143
2018130