scispace - formally typeset
Search or ask a question
Topic

Pertuzumab

About: Pertuzumab is a research topic. Over the lifetime, 1453 publications have been published within this topic receiving 73219 citations. The topic is also known as: 2C4 Antibody & MOAB 2C4.


Papers
More filters
Journal ArticleDOI
TL;DR: The introduction of trastuzumab led to the establishment of a new disease entity, “HER2-positive gastric cancer,” similar to HER1-positive breast cancer, and it is expected that more anti-HER2 drugs will be developed and introduced into clinical practice to treat HER2- positive cancers, including Gastric cancer.
Abstract: Human epidermal growth factor receptor 2 (HER2) is involved in the pathogenesis and poor outcomes of several types of cancer, including advanced gastric and gastroesophageal junction cancer. Molecular-targeted drugs, such as trastuzumab, which prolong overall survival and progression-free survival in HER2-positive breast cancer, may also be beneficial in patients with HER2-positive gastric cancer. Several studies have examined this possibility, such as the Trastuzumab for Gastric Cancer trial. In this context, the first part of this review provides an update on our knowledge of HER2 in breast and gastric cancer, including the detection and prognostic relevance of HER2 in gastric cancer. The second part of the review discusses the results of pivotal clinical trials that examined the potential for using trastuzumab to treat this disease. This section also summarizes the trials that have been conducted or that are underway to determine the optimal uses of trastuzumab in gastric cancer, including its use as monotherapy and continuation beyond disease progression. The final section discusses the future prospects of other anti-HER2 drugs, including lapatinib, trastuzumab emtansine, and pertuzumab, for the treatment of HER2-positive gastric cancer. The introduction of trastuzumab led to the establishment of a new disease entity, “HER2-positive gastric cancer,” similar to HER2-positive breast cancer. It is expected that more anti-HER2 drugs will be developed and introduced into clinical practice to treat HER2-positive cancers, including gastric cancer.

270 citations

Journal ArticleDOI
01 Jan 2007-Drugs
TL;DR: Novel therapeutics, such as lapatinib, an oral tyrosine kinase inhibitor, which blocks both the epidermal growth factor receptor and HER2 receptor has recently been approved by the US FDA, and pertuzumab, a humanised monoclonal antibody directed against heterodimerisation of HER2 and HER3 has entered phase II and III clinical trials.
Abstract: In the year 2006, breast cancer was estimated to affect >200 000 American women and cause nearly 56 000 deaths. Furthermore, breast cancer is the most common cancer diagnosed and second most common cause of cancer-related deaths in women. The current treatment armamentarium for breast cancer includes chemotherapy, endocrine therapy and biological therapy. Treatment has become more individualised based on characteristics of the tumour including overexpression of the human epidermal growth factor receptor (HER)-2. Between 20 and 30% of all breast cancers overexpress HER2, which means 40 000–60 000 patients will have this type of cancer. Previously, overexpression of HER2 was a negative prognostic and predictive risk factor for survival; however, with the advent of trastuzumab, patients’ prognosis is improving in all treatment settings. Much controversy exists in the use of trastuzumab, including (i) the sequence of adjuvant trastuzumab (concurrent with chemotherapy or sequential); (ii) the treatment duration (<1 year, 1 year or 2 years); and (iii) the treatment choice upon disease progression (whether to continue or not with trastuzumab and add another cytotoxic agent). Current trials are ongoing to help answer these questions. Furthermore, there has been interest in predicting which HER2-positive patients would require anthracycline therapy, and which could avoid anthra-cycline therapy and its toxicities. Novel therapeutics, such as lapatinib, an oral tyrosine kinase inhibitor, which blocks both the epidermal growth factor receptor and HER2 receptor has recently been approved by the US FDA. Whereas pertuzumab, a humanised monoclonal antibody, directed against heterodimerisation of HER2 and HER3 has entered phase II and III clinical trials.

265 citations

Journal Article
TL;DR: The JIMT-1 cell line provides a valuable experimental model for studies of new trastuzumab-resistance mechanisms and is phenotypically of epithelial progenitor cell origin, as evidenced by immunohistochemical positivity for both cytokeratins 5/14 and 8/18.
Abstract: Clinical resistance to the HER-2 oncogene-targeting drug trastuzumab (Herceptin) exists, but studies of the resistance mechanisms are hampered by the lack of suitable experimental model systems. We established a carcinoma cell line (designated JIMT-1) from a pleural metastasis of a 62-year old patient with breast cancer who was clinically resistant to trastuzumab. JIMT-1 cells grow as an adherent monolayer and form xenograft tumors in nude mice. JIMT-1 cells have an amplified HER-2 oncogene, which showed no identifiable mutations in its coding sequence. JIMT-1 cells overexpress HER-2 mRNA and protein, and the levels of HER-1, HER-3, and HER-4 mRNA and protein were similar to the trastuzumab-sensitive cell line SKBR-3. The cell line lacks expression of hormone receptors (estrogen receptors and progesterone receptors) and is phenotypically of epithelial progenitor cell origin, as evidenced by immunohistochemical positivity for both cytokeratins 5/14 and 8/18. JIMT-1 cells were insensitive to trastuzumab and another HER-2-inhibiting drug, pertuzumab (2C4), in vitro and in xenograft tumors. Small molecule tyrosine kinase inhibitors Ci1033 and ZD1839 inhibited the JIMT-1 cell growth but to a lesser degree than in trastuzumab-sensitive BT-474 cells. The lack of growth inhibition was rationalized by the unaltered Akt phosphorylation in JIMT-1 cells. Erk1/2 phosphorylation was slightly reduced but still evident in JIMT-1 cells. We conclude that the JIMT-1 cell line provides a valuable experimental model for studies of new trastuzumab-resistance mechanisms.

251 citations

Journal ArticleDOI
TL;DR: Pertuzumab is well tolerated with a RR of 4.3% in heavily-pretreated OC patients and further studies on pHER2 as a diagnostic are warranted.
Abstract: Purpose Ovarian cancers (OCs) frequently have HER2 activation in the absence of HER2 overexpression. Pertuzumab, a humanized antibody that prevents HER2 dimerization and inhibits multiple HER-mediated pathways, was studied in a phase II, multicenter trial in advanced, refractory OC. Patients and Methods Sixty-one patients (cohort 1) with relapsed OC received a loading dose of 840 mg pertuzumab intravenously followed by 420 mg every 3 weeks; 62 patients (cohort 2) received 1,050 mg every 3 weeks. Response rate was the primary end point. Fresh tumor biopsies were obtained in cohort 1 to assay for phosphorylated HER2 (pHER2). Results Median age was 57 years and median number of prior chemotherapy regimens was five. Fifty-five patients in cohort 1 and 62 patients in cohort 2 were assessable for efficacy. There were five partial responses (response rate [RR] = 4.3%; 95% CI, 1.7% to 9.4%), eight patients (6.8%) with stable disease (SD) lasting at least 6 months, and 10 patients with CA-125 reduction of at least...

249 citations

Journal ArticleDOI
TL;DR: A panel of 38 nanobodies, small HER2‐binding fragments that are derived from heavy‐chain‐only antibodies raised in an immunized dromedary are described, which was found to be stable and to interact specifically with HER2 recombinant protein and Her2‐expressing cells in ELISA, surface plasmon resonance, flow cytometry, and radioligand binding studies with low nanomolar affinities.
Abstract: Accurate determination of tumor human epidermal growth factor receptor 2 (HER2)-status in breast cancer patients is possible via noninvasive imaging, provided adequate tracers are used. In this study, we describe the generation of a panel of 38 nanobodies, small HER2-binding fragments that are derived from heavy-chain-only antibodies raised in an immunized dromedary. In search of a lead compound, a subset of nanobodies was biochemically characterized in depth and preclinically tested for use as tracers for imaging of xenografted tumors. The selected compound, 2Rs15d, was found to be stable and to interact specifically with HER2 recombinant protein and HER2-expressing cells in ELISA, surface plasmon resonance, flow cytometry, and radioligand binding studies with low nanomolar affinities, and did not compete with anti-HER2 therapeutic antibodies trastuzumab and pertuzumab. Single-photon-emission computed tomography (SPECT) imaging quantification and biodistribution analyses showed that (99m)Tc-labeled 2Rs15d has a high tumor uptake in 2 HER2(+) tumor models, fast blood clearance, low accumulation in nontarget organs except kidneys, and high concomitant tumor-to-blood and tumor-to-muscle ratios at 1 h after intravenous injection. These values were dramatically lower for an irrelevant control (99m)Tc-nanobody and for (99m)Tc-2Rs15d targeting a HER2(-) tumor.

244 citations


Network Information
Related Topics (5)
Breast cancer
214.3K papers, 6.4M citations
89% related
Cancer
339.6K papers, 10.9M citations
87% related
Colorectal cancer
71.1K papers, 2.2M citations
84% related
Metastasis
103.6K papers, 3.4M citations
84% related
Carcinogenesis
60.3K papers, 3.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023372
2022307
2021158
2020144
2019143
2018130