scispace - formally typeset
Search or ask a question
Topic

Petrography

About: Petrography is a research topic. Over the lifetime, 7449 publications have been published within this topic receiving 102018 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated ∼10,000 sand grains from seven sites along the Vaal River in South Africa, ranging from 103 to 759 km downriver from the 2.020 Ga Vredefort impact structure, for the presence of detrital shocked minerals.

48 citations

Journal ArticleDOI
TL;DR: The results of thin section and X-ray powder diffraction (XRD) studies on the pre-Santonian sedimentary rocks outside the vicinity of exposed igneous rocks in the Lower Benue rift are presented in this article.

48 citations

Journal ArticleDOI
TL;DR: Petrographic and Raman spectroscopic surveys of apatite grains in association with carbonaceous material (CM) in two banded iron formations (BIFs) from the Paleoproterozoic of Uruguay and Michigan for comparison with similar mineral associations in the highly debated Akilia Quartz-pyroxene (Qp) rock as mentioned in this paper.

48 citations

Book ChapterDOI
TL;DR: A review of existing schemes of classification alone, although a critical appraisal has been made of the various systems that have been published in the past 60 years in an attempt to arrive at a systematic petrologic and petrographic plan of study can be found in this paper.
Abstract: Summary The objective of this chapter is to evaluate some of the proposed classifications of sedimentary carbonate rocks, and to present suggestions for naming and describing them. It is not an historical review of existing schemes of classification alone, although a critical appraisal has been made of the various systems that have been published in the past 60 years in an attempt to arrive at a systematic petrologic and petrographic plan of study.

48 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed 789 individual lithic fragments from the 2 mm-4 mm grain-size fractions of five Apollo 17 soil samples (72443, 72503, 73243, 76283, and 76503) and determined the diversity and proportions of rock types recorded within soils from the highland massifs.
Abstract: Through analysis by instrumental neutron activation (INAA) of 789 individual lithic fragments from the 2 mm-4 mm grain-size fractions of five Apollo 17 soil samples (72443, 72503, 73243, 76283, and 76503) and petrographic examination of a subset, we have determined the diversity and proportions of rock types recorded within soils from the highland massifs. The distribution of rock types at the site, as recorded by lithic fragments in the soils, is an alternative to the distribution inferred from the limited number of large rock samples. The compositions and proportions of 2 mm-4 mm fragments provide a bridge between compositions of less than 1 mm fines and types and proportions of rocks observed in large collected breccias and their clasts. The 2 mm-4 mm fraction of soil from South Massif, represented by an unbiased set of lithic fragments from station-2 samples 72443 and 72503, consists of 71% noritic impact-melt breccia, 7% Incompatible-Trace-Element-(ITE)-poor highland rock types (mainly granulitic breccias), 19% agglutinates and regolith breccias, 1% high-Ti mare basalt, and 2% others (very-low-Ti (VLT) basalt, monzogabbro breccia, and metal). In contrast, the 2 mm - 4 mm fraction of a soil from the North Massif, represented by an unbiased set of lithic fragments from station-6 sample 76503, has a greater proportion of ITE-poor highland rock types and mare-basalt fragments: it consists of 29% ITE-poor highland rock types (mainly granulitic breccias and troctolitic anorthosite), 25% impact-melt breccia, 13% high-Ti mare basalt, 31 % agglutinates and regolith breccias, 1% orange glass and related breccia, and 1% others. Based on a comparison of mass- weighted mean compositions of the lithic fragments with compositions of soil fines from all Apollo 17 highland stations, differences between the station-2 and station-6 samples are representative of differences between available samples from the two massifs. From the distribution of different rock types and their compositions, we conclude the following: (1) North-Massif and South-Massif soil samples differ significantly in types and proportions of ITE-poor highland components and ITE-rich impact-melt-breccia components. These differences reflect crudely layered massifs and known local geology. The greater percentage of impact-melt breccia in the South- Massif light-mantle soil stems from derivation of the light mantle from the top of the massif, which apparently is richer in noritic impact-melt breccia than are lower parts of the massifs. (2) At station 2, the 2 mm-4 mm grain-size fraction is enriched in impact-melt breccias compared to the less than 1 mm fraction, suggesting that the <1 mm fraction within the light mantle has a greater proportion of lithologies such as granulitic breccias which are more prevalent lower in the massifs and which we infer to be older (pre-basin) highland components. (3) Soil from station 6, North Massif, contains magnesian troctolitic anorthosite, which is a component that is rare in station-2 South-Massif,contains magnesian troctolitic in impact-melt breccia interpreted by most investigators to be ejecta from the Serenitatis basin.

48 citations


Network Information
Related Topics (5)
Sedimentary rock
30.3K papers, 746.5K citations
91% related
Basalt
18.6K papers, 805.1K citations
89% related
Zircon
23.7K papers, 786.6K citations
88% related
Fault (geology)
26.7K papers, 744.5K citations
84% related
Carbonate
34.8K papers, 802.6K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023551
20221,098
2021370
2020344
2019310
2018291