scispace - formally typeset
Search or ask a question
Topic

Phase-change material

About: Phase-change material is a research topic. Over the lifetime, 9322 publications have been published within this topic receiving 193871 citations. The topic is also known as: PCM.


Papers
More filters
Journal ArticleDOI
TL;DR: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high energy storage density and the isothermal nature of the storage process.
Abstract: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCMs have been widely used in latent heat thermal-storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. The uses of PCMs for heating and cooling applications for buildings have been investigated within the past decade. There are large numbers of PCMs that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also summarizes the investigation and analysis of the available thermal energy storage systems incorporating PCMs for use in different applications.

4,482 citations

Journal ArticleDOI
TL;DR: In this article, the development of available thermal energy storage (TES) technologies and their individual pros and cons for space and water heating applications are reviewed and compared for low temperature applications, where water is used as a storage medium.

1,156 citations

Journal ArticleDOI
TL;DR: In this article, a review of thermal energy storage (TES) for cold storage applications using solid liquid phase change materials has been carried out, focusing on different aspects: phase change material (PCM), encapsulation, heat transfer enhancement, and the effect of storage on food quality.

851 citations

Journal ArticleDOI
TL;DR: In this paper, the development of clean vehicles, including pure electric vehicles (EVs), hybrid vehicles (HEVs), and fuel cell electric vehicle (FCEVs) and high energy power batteries, such as nickel metal hydride (Ni-MH), lithium-ion (Li-ion) and proton exchange membrane fuel cells (PEMFCs), are discussed and compared.
Abstract: This paper reviews the development of clean vehicles, including pure electric vehicles (EVs), hybrid electric vehicles (HEVs) and fuel cell electric vehicles (FCEVs), and high energy power batteries, such as nickel metal hydride (Ni-MH), lithium-ion (Li-ion) and proton exchange membrane fuel cells (PEMFCs). The mathematical models and thermal behavior of the batteries are described. Details of various thermal management techniques, especially the PCMs battery thermal management system and the materials thermal conductivity, are discussed and compared. It is concluded that the EVs, HEVs and FCEVs are effective to reduce GHG and pollutants emission and save energy. At stressful and abuse conditions, especially at high discharge rates and at high operating or ambient temperatures, traditional battery thermal energy management systems, such as air and liquid, may be not meeting the requirements. Pulsating heat pipe may be more effective but needs to be well designed. In addition, progress in developing new high temperature material is very difficult. PCM for battery thermal management is a better selection than others. Nevertheless, thermal conductivity of the PCMs such as paraffin is low and some methods are adopted to enhance the heat transfer of the PCMs. The performance and thermo-mechanical behaviors of the improved PCMs in the battery thermal management system need to be investigated experimentally. And the possibility of the heat collection and recycling needs to be discussed in terms of energy saving and efficient.

812 citations

Journal ArticleDOI
TL;DR: In this paper, the authors determined the proper amount of paraffin ( n -docosane) absorbed into expanded graphite (EG) to obtain form-stable composite as phase change material (PCM), examination of the influence of EG addition on the thermal conductivity using transient hot-wire method and investigation of latent heat thermal energy storage (LHTES) characteristics of Paraffin such as melting time, melting temperature and latent heat capacity using differential scanning calorimetry (DSC) technique.

793 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
89% related
Thermal conductivity
72.4K papers, 1.4M citations
86% related
Photovoltaic system
103.9K papers, 1.6M citations
85% related
Renewable energy
87.6K papers, 1.6M citations
81% related
Solar cell
67.6K papers, 1.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,048
20221,916
20211,062
20201,043
2019946
2018800