scispace - formally typeset
Search or ask a question

Showing papers on "Phase (matter) published in 2018"


Journal ArticleDOI
30 Mar 2018-Science
TL;DR: A general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports is presented.
Abstract: The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~10 5 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

873 citations


Journal ArticleDOI
TL;DR: It is shown that micrometre-sized metallic 1T′-MoS2- and 1T-MoSe2-layered crystals can be prepared in high phase purity on a large scale, and that they display promising electrocatalytic activity towards the hydrogen evolution reaction.
Abstract: Phase control plays an important role in the precise synthesis of inorganic materials, as the phase structure has a profound influence on properties such as conductivity and chemical stability. Phase-controlled preparation has been challenging for the metallic-phase group-VI transition metal dichalcogenides (the transition metals are Mo and W, and the chalcogens are S, Se and Te), which show better performance in electrocatalysis than their semiconducting counterparts. Here, we report the large-scale preparation of micrometre-sized metallic-phase 1T′-MoX2 (X = S, Se)-layered bulk crystals in high purity. We reveal that 1T′-MoS2 crystals feature a distorted octahedral coordination structure and are convertible to 2H-MoS2 following thermal annealing or laser irradiation. Electrochemical measurements show that the basal plane of 1T′-MoS2 is much more active than that of 2H-MoS2 for the electrocatalytic hydrogen evolution reaction in an acidic medium.

657 citations


Journal ArticleDOI
TL;DR: Remarkably, BVC-A shows outstanding electrocatalytic NRR performance with high average yield under ambient conditions, which is superior to the Bi4 V2 O11 /CeO2 hybrid with crystalline phase (BVC-C) counterpart.
Abstract: N2 fixation by the electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions is regarded as a potential approach to achieve NH3 production, which still heavily relies on the Haber-Bosch process at the cost of huge energy and massive production of CO2 . A noble-metal-free Bi4 V2 O11 /CeO2 hybrid with an amorphous phase (BVC-A) is used as the cathode for electrocatalytic NRR. The amorphous Bi4 V2 O11 contains significant defects, which play a role as active sites. The CeO2 not only serves as a trigger to induce the amorphous structure, but also establishes band alignment with Bi4 V2 O11 for rapid interfacial charge transfer. Remarkably, BVC-A shows outstanding electrocatalytic NRR performance with high average yield (NH3 : 23.21 μg h-1 mg-1cat. , Faradaic efficiency: 10.16 %) under ambient conditions, which is superior to the Bi4 V2 O11 /CeO2 hybrid with crystalline phase (BVC-C) counterpart.

555 citations


Journal ArticleDOI
29 Nov 2018-Cell
TL;DR: CasDrop is used, a novel CRISPR-Cas9-based optogenetic technology, to show that various IDPs phase separate into liquid condensates that mechanically exclude chromatin as they grow and preferentially form in low-density, largely euchromatic regions.

490 citations


Journal ArticleDOI
TL;DR: It is revealed that appropriate FA+ incorporation can effectively control the perovskite crystallization kinetics, which reduces nonradiative recombination centers to acquire high-quality films with a limited nonorientated phase.
Abstract: Halide perovskites with reduced-dimensionality (e.g., quasi-2D, Q-2D) have promising stability while retaining their high performance as compared to their three-dimensional counterpart. Generally, they are obtained in (A1)2(A2)n−1PbnI3n+1 thin films by adjusting A site cations, however, the underlying crystallization kinetics mechanism is less explored. In this manuscript, we employed ternary cations halides perovskite (BA)2(MA,FA)3Pb4I13 Q-2D perovskites as an archetypal model, to understand the principles that link the crystal orientation to the carrier behavior in the polycrystalline film. We reveal that appropriate FA+ incorporation can effectively control the perovskite crystallization kinetics, which reduces nonradiative recombination centers to acquire high-quality films with a limited nonorientated phase. We further developed an in situ photoluminescence technique to observe that the Q-2D phase (n = 2, 3, 4) was formed first followed by the generation of n = ∞ perovskite in Q-2D perovskites. These...

287 citations


Journal ArticleDOI
TL;DR: This phase-controlled bottom-up synthesis of 1T′ MoS2 monolayers with high phase purity allows us to characterize their intrinsic optical and electrical properties, revealing a characteristic in-plane anisotropy.
Abstract: Two-dimensional (2D) MoS2, which has great potential for optoelectronic and other applications, is thermodynamically stable and hence easily synthesized in its semiconducting 2H phase. In contrast, growth of its metastable 1T and 1T' phases is hampered by their higher formation energy. Here we use theoretical calculations to design a potassium (K)-assisted chemical vapour deposition method for the phase-selective growth of 1T' MoS2 monolayers and 1T'/2H heterophase bilayers. This is realized by tuning the concentration of K in the growth products to invert the stability of the 1T' and 2H phases. The synthesis of 1T' MoS2 monolayers with high phase purity allows us to characterize their intrinsic optical and electrical properties, revealing a characteristic in-plane anisotropy. This phase-controlled bottom-up synthesis offers a simple and efficient way of manipulating the relevant device structures, and provides a general approach for producing other metastable-phase 2D materials with unique properties.

283 citations



Journal ArticleDOI
TL;DR: It is hypothesize that the increasing acidity and salinity in evaporating respiratory droplets may affect the structure of the virus, although at low enough RH, crystallization of the droplet components may eliminate their harmful effects.
Abstract: The detailed physico-chemical characteristics of respiratory droplets in ambient air, where they are subject to evaporation, are poorly understood. Changes in the concentration and phase of major components in a droplet-salt (NaCl), protein (mucin) and surfactant (dipalmitoylphosphatidylcholine)-may affect the viability of any pathogens contained within it and thus may affect the efficiency of transmission of infectious disease by droplets and aerosols. The objective of this study is to investigate the effect of relative humidity (RH) on the physico-chemical characteristics of evaporating droplets of model respiratory fluids. We labelled these components in model respiratory fluids and observed evaporating droplets suspended on a superhydrophobic surface using optical and fluorescence microscopy. When exposed to continuously decreasing RH, droplets of different model respiratory fluids assumed different morphologies. Loss of water induced phase separation as well as indication of a decrease in pH. The presence of surfactant inhibited the rapid rehydration of the non-volatile components. An enveloped virus, ϕ6, that has been proposed as a surrogate for influenza virus appeared to be homogeneously distributed throughout the dried droplet. We hypothesize that the increasing acidity and salinity in evaporating respiratory droplets may affect the structure of the virus, although at low enough RH, crystallization of the droplet components may eliminate their harmful effects.

251 citations


Journal ArticleDOI
TL;DR: The much smaller energy barrier, longer HSe bond length, and diminished bandgap endow N-MoSe2 /TiC-C arrays with substantially superior HER performance compared to 1T and 2H phase counterparts.
Abstract: Tailoring molybdenum selenide electrocatalysts with tunable phase and morphology is of great importance for advancement of hydrogen evolution reaction (HER). In this work, phase- and morphology-modulated N-doped MoSe2 /TiC-C shell/core arrays through a facile hydrothermal and postannealing treatment strategy are reported. Highly conductive TiC-C nanorod arrays serve as the backbone for MoSe2 nanosheets to form high-quality MoSe2 /TiC-C shell/core arrays. Impressively, continuous phase modulation of MoSe2 is realized on the MoSe2 /TiC-C arrays. Except for the pure 1T-MoSe2 and 2H-MoSe2 , mixed (1T-2H)-MoSe2 nanosheets are achieved in the N-MoSe2 by N doping and demonstrated by spherical aberration electron microscope. Plausible mechanism of phase transformation and different doping sites of N atom are proposed via theoretical calculation. The much smaller energy barrier, longer HSe bond length, and diminished bandgap endow N-MoSe2 /TiC-C arrays with substantially superior HER performance compared to 1T and 2H phase counterparts. Impressively, the designed N-MoSe2 /TiC-C arrays exhibit a low overpotential of 137 mV at a large current density of 100 mA cm-2 , and a small Tafel slope of 32 mV dec-1 . Our results pave the way to unravel the enhancement mechanism of HER on 2D transition metal dichalcogenides by N doping.

234 citations


Journal ArticleDOI
TL;DR: These insights enable to obtain high quality Ruddlesden-Popper reduced-dimensional hybrid perovskite films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties.
Abstract: Ruddlesden-Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA)2 (MA)3 Pb4 I13 phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed. As such, the thermodynamically preferred perpendicular crystal orientation and high phase purity are obtained. At low temperature, the formation of intermediate phases, including PbI2 crystals and solvate complexes, slows down intercalation of ions and increases nucleation barrier, leading to formation of multiple RDP phases and orientation randomness. These insights enable to obtain high quality (BA)2 (MA)3 Pb4 I13 films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties. The resulting devices exhibit high power conversion efficiency of 12.17%. This work should help guide the perovskite community to better control Ruddlesden-Popper perovskite structure and further improve optoelectronic and solar cell devices.

229 citations


Journal ArticleDOI
TL;DR: It is discovered that polar solvent molecules can induce the lattice distortion of ligand-stabilized cubic CsPbI3, leading to the phase transition into orthorhombic phase, which is unfavorable for photovoltaic applications.
Abstract: Despite the recent surge of interest in inorganic lead halide perovskite nanocrystals, there are still significant gaps in their stability disturbance and the understanding of their destabilization, assembly, and growth processes. Here, we discover that polar solvent molecules can induce the lattice distortion of ligand-stabilized cubic CsPbI3, leading to the phase transition into orthorhombic phase, which is unfavorable for photovoltaic applications. Such lattice distortion triggers the dipole moment on CsPbI3 nanocubes, which subsequently initiates the hierarchical self-assembly of CsPbI3 nanocubes into single-crystalline nanowires. The systematic investigations and in situ monitoring on the kinetics of the self-assembly process disclose that the more amount or the stronger polarity of solvent can induce the more rapid self-assembly and phase transition. These results not only elucidate the destabilization mechanism of cubic CsPbI3 nanocrystals, but also open up opportunities to synthesize and store cub...

Journal ArticleDOI
TL;DR: In this paper, an off-equiatomic Cr26Mn20Fe20Co20Ni 14 high-entropy alloy was solutionized and isothermally aged at temperatures between 600°C and 1000°C for times to 1000

Journal ArticleDOI
TL;DR: This work predicts x, y, Me′, and Me″ such that the resulting compositions have both high Curie temperature and form in the perovskite structure and iteratively refine the machine learning models via an active learning loop.
Abstract: Experimental search for high-temperature ferroelectric perovskites is a challenging task due to the vast chemical space and lack of predictive guidelines. Here, we demonstrate a two-step machine learning approach to guide experiments in search of xBi $$[ {{\mathrm{Me}}_y' {\mathrm{Me}}_{(1 - y)}'' } ]$$ O3–(1 − x)PbTiO3-based perovskites with high ferroelectric Curie temperature. These involve classification learning to screen for compositions in the perovskite structures, and regression coupled to active learning to identify promising perovskites for synthesis and feedback. The problem is challenging because the search space is vast, spanning ~61,500 compositions and only 167 are experimentally studied. Furthermore, not every composition can be synthesized in the perovskite phase. In this work, we predict x, y, Me′, and Me″ such that the resulting compositions have both high Curie temperature and form in the perovskite structure. Outcomes from both successful and failed experiments then iteratively refine the machine learning models via an active learning loop. Our approach finds six perovskites out of ten compositions synthesized, including three previously unexplored {Me′Me″} pairs, with 0.2Bi(Fe0.12Co0.88)O3–0.8PbTiO3 showing the highest measured Curie temperature of 898 K among them. Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroelectric Curie temperature.

Journal ArticleDOI
01 Oct 2018-Nature
TL;DR: St stereochemically induced behaviour in ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE) copolymers is reported, which is similar to that observed at morphotropic phase boundaries in perovskites, and opens up the way for the development of scalable, high-performance piezoelectric polymers.
Abstract: Piezoelectricity—the direct interconversion between mechanical and electrical energies—is usually remarkably enhanced at the morphotropic phase boundary of ferroelectric materials1–4, which marks a transition region in the phase diagram of piezoelectric materials and bridges two competing phases with distinct symmetries1,5. Such enhancement has enabled the recent development of various lead and lead-free piezoelectric perovskites with outstanding piezoelectric properties for use in actuators, transducers, sensors and energy-harvesting applications5–8. However, the morphotropic phase boundary has never been observed in organic materials, and the absence of effective approaches to improving the intrinsic piezoelectric responses of polymers9,10 considerably hampers their application to flexible, wearable and biocompatible devices. Here we report stereochemically induced behaviour in ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) copolymers, which is similar to that observed at morphotropic phase boundaries in perovskites. We reveal that compositionally tailored tacticity (the stereochemical arrangement of chiral centres related to the TrFE monomers11,12) can lead to intramolecular order-to-disorder evolution in the crystalline phase and thus to an intermediate transition region that is reminiscent of the morphotropic phase boundary, where competing ferroelectric and relaxor properties appear simultaneously. Our first-principles calculations confirm the crucial role of chain tacticity in driving the formation of this transition region via structural competition between the trans-planar and 3/1-helical phases. We show that the P(VDF-TrFE) copolymer with the morphotropic composition exhibits a longitudinal piezoelectric coefficient of −63.5 picocoulombs per newton, outperforming state-of-the-art piezoelectric polymers10. Given the flexibility in the molecular design and synthesis of organic ferroelectric materials, this work opens up the way for the development of scalable, high-performance piezoelectric polymers.

Journal ArticleDOI
TL;DR: Detailed insight into the microscopic processes occurring at the boundary of crystalline perovskite grains is offered and will support the development of better passivation strategies, ultimately allowing the processing of more environmentally stable perovkite films.
Abstract: Mixed-halide perovskites have emerged as promising materials for optoelectronics due to their tunable band gap in the entire visible region. A challenge remains, however, in the photoinduced phase segregation, narrowing the band gap of mixed-halide perovskites under illumination thus restricting applications. Here, we use a combination of spatially resolved and bulk measurements to give an in-depth insight into this important yet unclear phenomenon. We demonstrate that photoinduced phase segregation in mixed-halide perovskites selectively occurs at the grain boundaries rather than within the grain centers by using shear-force scanning probe microscopy in combination with confocal optical spectroscopy. Such difference is further evidenced by light-biased bulk Fourier-transform photocurrent spectroscopy, which shows the iodine-rich domain as a minority phase coexisting with the homogeneously mixed phase during illumination. By mapping the surface potential of mixed-halide perovskites, we evidence the higher...

Journal ArticleDOI
30 Nov 2018-Science
TL;DR: An isostructural, purely electronically driven metal-insulator transition is demonstrated in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide, to provide insights into phase transitions of correlated materials and may aid the design of device functionalities.
Abstract: The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.

Journal ArticleDOI
TL;DR: In this article, an FeCoCrNi high-entropy alloy (HEA) was deformed at ambient temperature and cryogenic temperatures down to 4.2 K. Phase transformation from a face-centered cubic structure to a hexagonal close-packed (HCP) structure occurred during cryogenic deformation.
Abstract: An FeCoCrNi high-entropy alloy (HEA) was deformed at ambient temperature and cryogenic temperatures down to 4.2 K. Phase transformation from a face-centered cubic (FCC) structure to a hexagonal close-packed (HCP) structure occurred during cryogenic deformation. Lowering the temperature promotes the transformation. Atomic-scale structural characterisation suggested that the formation of the HCP structure was achieved via the glide of Shockley partial dislocations on every other plane. Due to the kinetic limitation, the occurrence of this transformation was limited even though theoretical investigations predicted lower free energy of the HCP phase than that of the FCC phase in the HEA.

Journal ArticleDOI
TL;DR: Achlioptas et al. as mentioned in this paper reported a series of achiral asymmetric dimers with an odd number of atoms in the spacer, which formed twisted structures in nematic as well as in lamellar phases.
Abstract: Chiral symmetry breaking in soft matter is a hot topic of current research. Recently, such a phenomenon was found in a fluidic phase showing orientational order of molecules-the nematic phase; although built of achiral molecules, the phase can exhibit structural chirality-average molecular direction follows a short-pitch helix. Here, we report a series of achiral asymmetric dimers with an odd number of atoms in the spacer, which form twisted structures in nematic as well as in lamellar phases. The tight pitch heliconical nematic (NTB) phase and heliconical tilted smectic C (SmCTB) phase are formed. The formation of a variety of helical structures is accompanied by a gradual freezing of molecular rotation. In the lowest temperature smectic phase, HexI, the twist is expressed through the formation of hierarchical structure: nanoscale helices and mesoscopic helical filaments. The short-pitch helical structure in the smectic phases is confirmed by resonant X-ray measurements.


Journal ArticleDOI
TL;DR: Nano particles of a few α/β Bi2O3 hetero-junctions of various compositions synthesized by one- pot hydrothermal method, exhibit exceptional and synergistic photo-catalytic activity for the degradation of Rhodamine-B in aqueous solution under natural sunlight.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the phase transformation from face-centered cubic to bodycentered cubic (fcc→bcc) in single-crystal and nanocrystalline HEAs investigated by molecular dynamics simulations.

Journal ArticleDOI
TL;DR: Bringing stability by proper surface functionalization without use of secondary additives would indeed help in wide spreading of their applications as CsPbI3 is one of the most demanding optical materials.
Abstract: High temperature colloidal synthesis for obtaining thermal, colloidal and phase-stable CsPbI3 nanocrystals with near-unity quantum yield is reported. While standard perovskite synthesis reactions were carried out at 160 °C (below 200 °C), increase of another ≈100 °C enabled the alkylammonium ions to passivate the surface firmly and prevented the nanocrystals from phase transformation. This did not require any inert atmosphere storage, use of heteroatoms, specially designed ligands, or the ice cooling protocol. Either at high temperature in reaction flask or in the crude mixture or purified dispersed solution; these nanocrystals were observed stable and retained the original emission. Different spectroscopic analyses were carried out and details of the surface binding of alkyl ammonium ligands in place of surface Cs in the crystal lattice were investigated. As CsPbI3 is one of the most demanding optical materials, bringing stability by proper surface functionalization without use of secondary additives would indeed help in wide spreading of their applications.

Journal ArticleDOI
TL;DR: In this article, the results of equilibrium and fractional crystallization experiments at 1 0 GPa using two different primary magmas representing deep (90 km) and shallow (35 km) mantle extraction depths are presented.
Abstract: Differentiation of hydrous primary, mantle-derived magmas is a fundamental process to generate evolved intermediate to SiO2-rich compositions forming the bulk of the continental and island arc crust. This study focuses on the results of equilibrium and fractional crystallization experiments at 1 0 GPa using two different primary magmas representing deep (90 km) and shallow (35 km) mantle extraction depths. Experiments on a hydrous high-Mg basalt were conducted at graphite-saturated and more oxidized conditions (NNO to NNOþ 2, where NNO is nickel–nickel oxide buffer) to exploit the influence of fO2 on phase assemblages and the evolution of derivative liquids. The liquid line of descent (LLD) was simulated from liquidus to near-solidus conditions ranging from 1330 C to 720 C. H2O contents varied from about 2 0 to more than 10 wt %. The LLD covers the entire compositional range from high-Mg basalt to high-silica rhyolite and evolves from metaluminous to peraluminous compositions at 56–60 wt % SiO2 under oxidizing conditions. The observed crystallization sequences and the LLD reveal contrasting behavior depending on oxidation state, H2O content and equilibrium versus fractional crystallization. Equilibrium crystallization of high-Mg basalt under reducing conditions is initially dominated by olivine fractionation followed by Cr-rich spinel, clinopyroxene (cpx), and orthopyroxene (opx). Finally, between 1060 and 1000 C, amphibole formed by a peritectic reaction consuming cpxþolivine and forming amphiboleþopx, resulting in 16% silica-undersaturated trachy-basaltic liquid. Equilibrium crystallization of the same composition under oxidizing conditions is characterized by strongly enhanced olivine and cpx fractionation and suppression of opx only occurring as a result of the peritectic amphibole-forming reaction at and below 1040 C. The liquid at 980 C is a peraluminous, alkali-poor, high-Al andesite representing 15% residual liquid. Fractional crystallization of the high-Mg basalt under oxidizing conditions evolves through fractionation of early olivine joined by cpx at 1200 C, followed by opx and hercynitic spinel (1140–1080 C) and amphibole at 1050 C coexisting with cpx (and spinel) to 980 C. At 950 C both garnet and plagioclase (plag) join amphibole as liquidus phases. This paragenesis (plus ilmenite and apatite) persists to 750 C with 16% residual liquid relative to the initial basaltic composition. Liquids evolve continuously from basalt to rhyolite, crossing the metaluminous–peraluminous boundary at about 60 wt % SiO2. Fractional crystallization of the basaltic andesite starting material differs at high temperature, where opx and cpx are the liquidus phases (1200–1080 C), followed by amphibole at the expense of opx. Below VC The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 11 J O U R N A L O F P E T R O L O G Y Journal of Petrology, 2018, Vol. 59, No. 1, 11–58 doi: 10.1093/petrology/egy017 Advance Access Publication Date: 16 February 2018

Journal ArticleDOI
TL;DR: It is found that this spin- liquid phase is continuously connected to a previously discovered spin-liquid phase of the isotropic J_{1}-J_{2} model, making the case that their respective spin liquids are isomorphic to each other.
Abstract: Spin systems with frustrated anisotropic interactions are of significant interest due to possible exotic ground states. We have explored their phase diagram on a nearest-neighbor triangular lattice using the density-matrix renormalization group and mapped out the topography of the region that can harbor a spin liquid. We find that this spin-liquid phase is continuously connected to a previously discovered spin-liquid phase of the isotropic J_{1}-J_{2} model. The two limits show nearly identical spin correlations, making the case that their respective spin liquids are isomorphic to each other.

Journal ArticleDOI
TL;DR: Most inorganic solid electrolytes (SEs) suffer from narrow intrinsic electrochemical windows and incompatibility with electrode materials, which results in the below par electrochemical performance as discussed by the authors.
Abstract: Most inorganic solid electrolytes (SEs) suffer from narrow intrinsic electrochemical windows and incompatibility with electrode materials, which results in the below par electrochemical performance...

Journal ArticleDOI
TL;DR: Through controlling the phase transformation and chromium species under hydrothermal condition, the Cr(VI) was extracted fully from hazardous Cr( VI)-containing gypsum sludge, with a very high efficiency.
Abstract: Through controlling the phase transformation and chromium species under hydrothermal condition, the Cr(VI) was extracted fully from hazardous Cr(VI)-containing gypsum sludge, with a very high effic...

Journal ArticleDOI
TL;DR: In this paper, the effects of Mg substitution on the structure, electrochemical performance and Na-ion diffusion in high voltage P2-type Na2/3Ni1/3−xMgxMn 2/3O2 (0 < x < 0.2) cathode materials for Naion batteries were investigated.
Abstract: We have presented a detailed investigation of the effects of Mg substitution on the structure, electrochemical performance and Na-ion diffusion in high voltage P2-type Na2/3Ni1/3−xMgxMn2/3O2 (0 < x < 0.2) cathode materials for Na-ion batteries. Structural analysis using neutron diffraction showed that Mg2+ substitutes at Ni2+ sites from ordered [(Ni2+/Mn4+)O6] honeycomb units along the ab-plane, leading to an AB-type structure that can be indexed using the P63 space group. Within the sodium layers, high Mg-substitution levels (i.e. x = 0.2) caused a disruption in the typical Na zig-zag ordering observed in the undoped material, leading to a more disordered Na distribution in the layers. Load curves of the x = 0.1 and 0.2 materials show smooth electrochemistry, indicative of a solid-solution process. Furthermore, DFT calculations showed an increase in Na-ion diffusivity for the Mg-substituted samples. Enhanced cycling stability was also observed in these materials; structural analysis using high-resolution in operando synchrotron X-ray diffraction show that such an improved electrochemical performance is caused by the suppression of the O2 phase and switch to the formation of an OP4 phase. Ab initio studies support our experimental evidence showing that the OP4 phase (cf. O2) is the most thermodynamically stable phase at high voltages for Mg-substituted compounds. Finally, we have provided evidence using diffraction for the x = 1/2 and x = 1/3 intermediate Na+-vacancy ordered phases in P2-Na2/3Ni1/3Mn2/3O2.

Journal ArticleDOI
Xi Jin1, Yang Zhou1, Lu Zhang1, Xingyu Du1, Bangsheng Li1 
TL;DR: In this article, a nano-lamellar eutectic microstructure composed of ordered BCC (B2) phase and ordered FCC (L12) phase was successfully designed and studied.

Journal ArticleDOI
TL;DR: A novel approach to microstructural engineering of RHEAs to form an “inverted” BCC + B2 microstructure with discrete B2 precipitates dispersed within a continuous BCC matrix, resulting in improved room temperature compressive ductility, while maintaining high yield strength at both room and elevated temperature.
Abstract: Typically, refractory high-entropy alloys (RHEAs), comprising a two-phase ordered B2 + BCC microstructure, exhibit extraordinarily high yield strengths, but poor ductility at room temperature, limiting their engineering application. The poor ductility is attributed to the continuous matrix being the ordered B2 phase in these alloys. This paper presents a novel approach to microstructural engineering of RHEAs to form an “inverted” BCC + B2 microstructure with discrete B2 precipitates dispersed within a continuous BCC matrix, resulting in improved room temperature compressive ductility, while maintaining high yield strength at both room and elevated temperature.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of the oxidation temperature, duration, oxygen partial pressure, film thickness and the crystallographic orientations in controlling the final phase of the copper oxide.
Abstract: Controlled thermal oxidations of thin copper films at relatively lower temperatures (up to 500°C) leading towards the formation of a single phase of copper oxide are investigated where the oxidation temperature, duration, oxygen partial pressure, film thickness and the crystallographic orientations play very crucial roles to significantly control the final phase of the copper oxide. Thin Cu films of thicknesses 100-1000 nm were deposited on glass and silicon substrates using the vacuum assisted thermal evaporation technique. Oxidations of those Cu films were performed at different temperatures for variable durations in air ambient as well as oxygen ambient conditions. Four probe resistivity measurement, x-ray diffraction (XRD), Raman spectroscopy, ultraviolet–visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM) and x-ray photoemission spectroscopy (XPS) techniques have been used to characterize the oxide films. At a thermodynamic equilibrium, it has been observed that the oxide phase is solely determined by the oxidation temperature, however, the oxygen partial pressure can significantly alter this temperature range. In case of thermal oxidation in air, the initial oxidation of the copper films starts at about 150 °C, but a well ordered crystalline phase of the cuprous oxide (Cu2O) is observed only above 200 °C. However, the cupric oxide (CuO) phase starts to appear only above 320 °C. The details of the oxidation mechanism of the Cu film are explained with a probable schematic model in terms of thermal diffusion as well as the chemical reactivity.