scispace - formally typeset
Topic

Phase transition

About: Phase transition is a(n) research topic. Over the lifetime, 82824 publication(s) have been published within this topic receiving 1617591 citation(s). The topic is also known as: phase transition & phase transformation.
Papers
More filters

Journal ArticleDOI
Abstract: A new definition of order called topological order is proposed for two-dimensional systems in which no long-range order of the conventional type exists. The possibility of a phase transition characterized by a change in the response of the system to an external perturbation is discussed in the context of a mean field type of approximation. The critical behaviour found in this model displays very weak singularities. The application of these ideas to the xy model of magnetism, the solid-liquid transition, and the neutral superfluid are discussed. This type of phase transition cannot occur in a superconductor nor in a Heisenberg ferromagnet.

5,691 citations


Journal ArticleDOI
Abstract: Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and $t\ensuremath{-}J$ models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in $d$-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and orbital fluctuations, mass renormalization effects, incoherence of charge dynamics, and phase transitions under control of key parameters such as band filling, bandwidth, and dimensionality. These parameters are experimentally varied by doping, pressure, chemical composition, and magnetic fields. Much of the observed behavior can be described by the current theory. Open questions and future problems are also extracted from comparison between experimental results and theoretical achievements.

5,274 citations


Journal ArticleDOI
03 Jan 2002-Nature
TL;DR: This work observes a quantum phase transition in a Bose–Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential, and can induce reversible changes between the two ground states of the system.
Abstract: For a system at a temperature of absolute zero, all thermal fluctuations are frozen out, while quantum fluctuations prevail. These microscopic quantum fluctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose-Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a superfluid to a Mott insulator phase. In the superfluid phase, each atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the excitation spectrum. We can induce reversible changes between the two ground states of the system.

4,124 citations


Journal ArticleDOI
Abstract: A thermodynamic theory of “weak” ferromagnetism of α-Fe 2 O 3 , MnCO 3 and CoCO 3 is developed on the basis of landau's theory of phase transitions of the second kind. It is shown that the “weak” ferromagnetism is due to the relativistic spin-lattice and the magnetic dipole interactions. A strong dependence of the properties of “weak” ferromagnetics on the magnetic crystalline symmetry is noted and the behaviour of these ferromagnetics in a magnetic field is studied.

3,916 citations


Journal ArticleDOI
Subir Sachdev1
01 Apr 1999-Physics World
Abstract: Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today.

3,715 citations


Network Information
Related Topics (5)
Phase diagram

29.3K papers, 604.2K citations

94% related
Landau theory

2.8K papers, 57K citations

94% related
Metastability

5.7K papers, 114K citations

94% related
Spin-½

40.4K papers, 796.6K citations

94% related
Critical point (thermodynamics)

13K papers, 313.1K citations

93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202280
20212,819
20202,924
20192,874
20182,790
20172,817

Top Attributes

Show by:

Topic's top 5 most impactful authors

Yoshihiro Ishibashi

165 papers, 3K citations

Kurt Binder

117 papers, 5.1K citations

Ryszard Jakubas

109 papers, 1.9K citations

Ekhard K. H. Salje

85 papers, 3.4K citations

Seiji Kojima

73 papers, 733 citations