scispace - formally typeset
Search or ask a question
Topic

Phased array

About: Phased array is a research topic. Over the lifetime, 19428 publications have been published within this topic receiving 229231 citations. The topic is also known as: Phased Array Radar, PAR.


Papers
More filters
Journal ArticleDOI
05 Feb 2016
TL;DR: An overview of research progress, current and planned array-based instruments, and open challenges in these areas related to the new generation of sparse arrays, PAFs, and AAs that are in development for astronomical observatories around the world are given.
Abstract: Phased arrays have a long history in radio astronomy. Large, sparse synthesis arrays have been in use for decades to capture high-resolution images of deep space objects. More recent work has extended the range of applications to other types of arrays, including aperture arrays (AAs) and phased array feeds (PAFs) for multibeam reflector antennas. The extreme sensitivity required for astronomical instrumentation is driving advances in numerical electromagnetic modeling, design optimization of large arrays, low noise amplifiers, minimization of receiver noise, cryogenic PAFs, array calibration, optimal beamforming, interferometric imaging, and array signal processing algorithms for radio-frequency interference mitigation. We give an overview of research progress, current and planned array-based instruments, and open challenges in these areas related to the new generation of sparse arrays, PAFs, and AAs that are in development for astronomical observatories around the world.

60 citations

Journal ArticleDOI
TL;DR: It is demonstrated that replacing the glass with a clear PDMS substrate eliminates the leaky Rayleigh waves, producing a broad and smooth radiation pattern suitable for a two-dimensional (2-D) phased array operating at frequencies greater than 50 MHz.
Abstract: Optical generation of ultrasound is a promising alternative to piezoelectricity for high-frequency arrays. An array element is defined by the size and location of a laser beam focused on a suitable surface. Optical generation using the thermoelastic effect has traditionally suffered from low conversion efficiency. We previously demonstrated an increase in conversion efficiency of nearly 20 dB with an optical absorbing layer consisting of a mixture of polydimethylsiloxane (PDMS) and carbon black spin coated onto a glass microscope slide. Radiation pattern measurements with an 85 MHz spherically focused transducer indicated an array element size of 20 /spl mu/m. These measurements lacked the spatial resolution required to reveal fine details in the radiated acoustic field. Here we report radiation pattern measurements with a 5-/spl mu/m spatial sampling, showing that the radiated acoustic field is degraded by leaky Rayleigh waves launched from the PDMS/glass interface. We demonstrate that replacing the glass with a clear PDMS substrate eliminates the leaky Rayleigh waves, producing a broad and smooth radiation pattern suitable for a two-dimensional (2-D) phased array operating at frequencies greater than 50 MHz.

60 citations

Journal ArticleDOI
TL;DR: A three-frequency sparse hemispherical ultrasound phased array was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping and was found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies.
Abstract: Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (-40, 40) and (-30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning (-25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system's ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non-thermal FUS brain therapy and concurrent microbubble cavitation monitoring through the availability of multiple frequencies.

60 citations

Journal ArticleDOI
TL;DR: Recent developments in the design and characterization of phased arrays are surveyed, anatomical and physiological factors that complicate successful clinical treatment are identified and the current state of phased array hardware development for hyperthermia is discussed.
Abstract: Microwave energy has proven useful for treating superficial tumours in the head, neck and chest regions. Currently, multi-element phased arrays are being proposed to upgrade clinical capabilities for localized microwave hyperthermia. When compared with a single radiating element, phased array applicators are expected to provide deeper tissue penetration, reduce undesired heating of normal tissues between the applicator and tumour, and improve local control of the tumour temperature distribution. This paper surveys recent developments in the design and characterization of phased arrays, identifies anatomical and physiological factors that complicate successful clinical treatment and discusses the current state of phased array hardware development for hyperthermia.

60 citations

Patent
12 Nov 1985
TL;DR: In this paper, a fiberoptic coupling system consisting of a phased array semiconductor laser and a squashed multimode light transmitting fiber is proposed. But the system is not suitable for the case where the laser light beam widths and divergences in planes parallel and perpendicular to an active region of the laser are known.
Abstract: A fiberoptic coupling system comprising a phased array semiconductor laser and a squashed multimode light transmitting fiber. The squashed input end has an oblong, preferably elliptical, or polygonal cross-section with major and minor core widths. The major width decreases toward an output end which preferably has a circular cross-section. The minor width may increase toward the output end or remain constant. This increase and decrease correspond to the characteristic laser light beam widths and divergences in planes parallel and perpendicular to an active region of the laser such that the fiber core widths are at least as large as the laser light beam widths and the fiber has input numerical apertures that cause the beam to be coupled at the divergences. This system has a light coupling efficiency of at least 70 percent.

60 citations


Network Information
Related Topics (5)
Antenna (radio)
208K papers, 1.8M citations
87% related
Radar
91.6K papers, 1M citations
86% related
Transmitter
61.9K papers, 874.2K citations
82% related
Amplifier
163.9K papers, 1.3M citations
81% related
Resonator
76.5K papers, 1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023373
20221,052
2021661
2020979
20191,266
20181,066