scispace - formally typeset
Search or ask a question
Topic

Phased array

About: Phased array is a research topic. Over the lifetime, 19428 publications have been published within this topic receiving 229231 citations. The topic is also known as: Phased Array Radar, PAR.


Papers
More filters
Proceedings Article
01 Jan 2004
TL;DR: This paper reports the first fully integrated 24-GHz eight-element phased-array receiver in a SiGe BiCMOS technology and the receiver utilizes a heterodyne topology and the signal combining is performed at an IF of 4.8 GHz.
Abstract: This paper reports the first fully integrated 24-GHz eight-element phased-array receiver in a SiGe BiCMOS technology. The receiver utilizes a heterodyne topology and the signal combining is performed at an IF of 4.8 GHz. The phase-shifting with 4 bits of resolution is realized at the LO port of the first down-conversion mixer. A ring LC voltage-controlled oscillator (VCO) generates 16 different phases of the LO. An integrated 19.2-GHz frequency synthesizer locks the VCO frequency to a 75-MHz external reference. Each signal path achieves a gain of 43 dB, a noise figure of 7.4 dB, and an IIP3 of -11 dBm. The eight-path array achieves an array gain of 61 dB and a peak-to-null ratio of 20 dB and improves the signal-to-noise ratio at the output by 9 dB.

251 citations

Journal ArticleDOI
01 Mar 2016
TL;DR: Next-generation phased arrays will employ high levels of digitization, which enables a wide range of improvements in capability and performance.
Abstract: Phased array technology has been evolving steadily with advances in solid-state microwave integrated circuits, analysis and design tools, and reliable fabrication practices. With significant government investments, the technologies have matured to a point where phased arrays are widely used in military systems. Next-generation phased arrays will employ high levels of digitization, which enables a wide range of improvements in capability and performance. Digital arrays leverage the rapid commercial evolution of digital processor technology. The cost of phased arrays can be minimized by utilizing high-volume commercial microwave manufacturing and packaging techniques. Dramatic cost reductions are achieved by employing a tile array architecture, which greatly reduces the number of printed circuit boards and connectors in the array.

249 citations

Journal ArticleDOI
TL;DR: In this paper, a circular phased array antenna that can generate orbital angular momentum (OAM) radio beams in the 10 GHz band is described, which consists of eight inset-fed patch elements and a microstrip corporate feeding network.
Abstract: A circular phased array antenna that can generate orbital angular momentum (OAM) radio beams in the 10 GHz band is described. The antenna consists of eight inset-fed patch elements and a microstrip corporate feeding network. A full-wave electromagnetic simulator is used to aid the antenna design and theoretical simulations are confirmed by measurements.

245 citations

Journal ArticleDOI
TL;DR: Using the same silicon nitride platform and phased array architecture, it is demonstrated that the first large-aperture visible nanophotonic phased array at 635 nm with an aperture size of 0.064°×0.074° is demonstrated, to the best of the authors' knowledge.
Abstract: We demonstrate passive large-scale nanophotonic phased arrays in a CMOS-compatible silicon photonic platform. Silicon nitride waveguides are used to allow for higher input power and lower phase variation compared to a silicon-based distribution network. A phased array at an infrared wavelength of 1550 nm is demonstrated with an ultra-large aperture size of 4 mm×4 mm, achieving a record small and near diffraction-limited spot size of 0.021°×0.021° with a side lobe suppression of 10 dB. A main beam power of 400 mW is observed. Using the same silicon nitride platform and phased array architecture, we also demonstrate, to the best of our knowledge, the first large-aperture visible nanophotonic phased array at 635 nm with an aperture size of 0.5 mm×0.5 mm and a spot size of 0.064°×0.074°.

244 citations

Journal ArticleDOI
TL;DR: The parametric adaptive matched filter (PAMF) for space-time adaptive processing (STAP) is introduced via the matched filter, multichannel linear prediction, and the multichannels LDU decomposition.
Abstract: The parametric adaptive matched filter (PAMF) for space-time adaptive processing (STAP) is introduced via the matched filter (MF), multichannel linear prediction, and the multichannel LDU decomposition. Two alternative algorithmic implementations of the PAMF are discussed. Issues considered include sample training data size and constant false alarm rate (CFAR). Detection test statistics are estimated for airborne phased array radar measurements, and probability of detection is estimated using simulated phased array radar data for airborne surveillance radar scenarios. For large sample sizes, the PAMF performs close to the MF; performance degrades slightly for small sample sizes. In both sample size ranges, the PAMF is tolerant to targets present in the training set.

244 citations


Network Information
Related Topics (5)
Antenna (radio)
208K papers, 1.8M citations
87% related
Radar
91.6K papers, 1M citations
86% related
Transmitter
61.9K papers, 874.2K citations
82% related
Amplifier
163.9K papers, 1.3M citations
81% related
Resonator
76.5K papers, 1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023373
20221,052
2021661
2020979
20191,266
20181,066