scispace - formally typeset
Search or ask a question
Topic

Phased array

About: Phased array is a research topic. Over the lifetime, 19428 publications have been published within this topic receiving 229231 citations. The topic is also known as: Phased Array Radar, PAR.


Papers
More filters
Journal ArticleDOI
TL;DR: Ultraino is a modular, inexpensive, and open platform that provides hardware, software, and example applications specifically aimed at controlling the transmission of narrowband airborne ultrasound and is composed of software, driver boards, and arrays that enable users to quickly and efficiently perform research in various emerging applications.
Abstract: Modern ultrasonic phased-array controllers are electronic systems capable of delaying the transmitted or received signals of multiple transducers. Configurable transmit–receive array systems, capable of electronic steering and shaping of the beam in near real-time, are available commercially, for example, for medical imaging. However, emerging applications, such as ultrasonic haptics, parametric audio, or ultrasonic levitation, require only a small subset of the capabilities provided by the existing controllers. To meet this need, we present Ultraino, a modular, inexpensive, and open platform that provides hardware, software, and example applications specifically aimed at controlling the transmission of narrowband airborne ultrasound. Our system is composed of software, driver boards, and arrays that enable users to quickly and efficiently perform research in various emerging applications. The software can be used to define array geometries, simulate the acoustic field in real time, and control the connected driver boards. The driver board design is based on an Arduino Mega and can control 64 channels with a square wave of up to 17 Vpp and $\pi $ /5 phase resolution. Multiple boards can be chained together to increase the number of channels. The 40-kHz arrays with flat and spherical geometries are demonstrated for parametric audio generation, acoustic levitation, and haptic feedback.

104 citations

Patent
03 Sep 2002
TL;DR: In this article, a monopole phased array thermotherapy applicator radiating radiofrequency energy for inducing a temperature rise in a target within a body includes a plurality of monopole elements each for transmitting electric-field radiation; a metallic waveguide with an RF reflecting ground plane surface with circular holes for mounting the monopole element where the waveguide forms an aperture for receiving a body to be treated; a waveform generator providing a source of electric field coupled to each monopole radiating element through a respective phase and power weighting network; at least one electric field probe positioned
Abstract: A monopole phased array thermotherapy applicator radiating radiofrequency energy for inducing a temperature rise in a target within a body includes a plurality of monopole elements each for transmitting electric-field radiation; a metallic waveguide with an RF reflecting ground plane surface with a plurality of circular holes for mounting the monopole elements where the metallic waveguide forms an aperture for receiving a body to be treated; a waveform generator providing a source of electric field coupled to each monopole radiating element through a respective phase and power weighting network; at least one electric field probe positioned on a skin surface of the body for detecting electric field radiation from the plurality of monopole elements; and a controller circuit coupled to the electric field probe received feedback signals to adjust the phase and power delivered to the plurality of monopole elements so that one or more adaptive nulls are formed on the surface of the body and a focus is formed at the target tissue to be treated with thermotherapy

104 citations

Journal ArticleDOI
Dong Gun Kam1, Duixian Liu1, Arun Natarajan1, Scott K. Reynolds1, Brian Floyd1 
TL;DR: The packaged transmitter and receiver chipsets have demonstrated beam-steered, non-line-of-sight links with data rates up to 5.3 Gb/s using 16-quadrature amplitude modulation single-carrier and orthogonal frequency division multiplexing schemes.
Abstract: A multilayer organic package with embedded 60-GHz antennas and fully integrated with a 60-GHz phased-array transmitter or receiver chip is demonstrated. The package includes sixteen phased-array antennas, an open cavity for housing the flip-chip attached RF chip, and interconnects operating at DC-66 GHz. The 28 mm 28 mm ball grid array package is manufactured using printed circuit board processes and uses a combination of liquid-crystal polymer and glass-reinforced laminates, allowing excellent 60-GHz interconnect and antenna performance. The measured return loss and gain of each antenna from 56 to 66 GHz are and , respectively. Finally, the packaged transmitter and receiver chipsets, each working with a heat sink, have demonstrated beam-steered, non-line-of-sight links with data rates up to 5.3 Gb/s using 16-quadrature amplitude modulation single-carrier and orthogonal frequency division multiplexing schemes.

104 citations

Journal ArticleDOI
TL;DR: In this article, a photonic in-phase/quadrature (I-Q) RF phase shifter utilizing two integrated optic Mach-Zehnder modulators has been tested.
Abstract: A photonic in-phase/quadrature (I-Q) RF phase shifter utilizing two integrated optic Mach-Zehnder modulators has been tested. This phase shifter demonstrates the capability of 360 degrees phase control, >

103 citations

Journal ArticleDOI
TL;DR: A new near‐field MRI detector array, the planar strip array (PSA), is presented that eliminates the coupling problems and can be extended to a very large number of detectors and high MRI frequencies.
Abstract: Parallel, spatial-encoded MRI requires a large number of independent detectors that simultaneously acquire signals. The loop structure and mutual coupling in conventional phased arrays limit the number of coils and therefore the potential reduction in minimum scan time achievable by parallel MRI tchniques. A new near-field MRI detector array, the planar strip array (PSA), is presented that eliminates the coupling problems and can be extended to a very large number of detectors and high MRI frequencies. Its basic structure is an array of parallel microstrips with a high permittivity substrate and overlay. The electromagnetic (EM) wavelength can be adjusted with the permittivity, and the strip lengths tuned to a preselected fraction of the wavelength of the MRI frequency. EM wave analysis and measurements on a prototype four-element PSA reveal that the coupling between the strips vanishes when the strip length is either an integer times a quarter wavelength for a standing-wave PSA, or a half wavelength for a travelling-wave PSA, independent of the spacing between the strips. The analysis, as well as phantom and human MRI experiments performed by conventional and parallel-encoded MRI with the PSA at 1.5 T, show that the decoupled strips produce a relatively high-quality factor and signal-to-noise ratio, provided that the strips are properly terminated, tuned, and matched or coupled to the preamplifiers.

103 citations


Network Information
Related Topics (5)
Antenna (radio)
208K papers, 1.8M citations
87% related
Radar
91.6K papers, 1M citations
86% related
Transmitter
61.9K papers, 874.2K citations
82% related
Amplifier
163.9K papers, 1.3M citations
81% related
Resonator
76.5K papers, 1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023373
20221,052
2021661
2020979
20191,266
20181,066