scispace - formally typeset
Search or ask a question
Topic

Phased-array optics

About: Phased-array optics is a research topic. Over the lifetime, 3035 publications have been published within this topic receiving 40553 citations.


Papers
More filters
Book
30 Nov 1993
TL;DR: Details of Element Pattern and Mutual Impedance Effects for Phased Arrays and Special Array Feeds for Limited Field of View and Wideband Arrays are presented.
Abstract: Phased Arrays in Radar and Communication Systems. Pattern Characteristics and Synthesis of Linear and Planar Arrays. Patterns of Nonplanar Arrays. Elements, Transmission Lines, and Feed Architectures for Phased Arrays. Summary of Element Pattern and Mutual Impedance Effects. Array Error Effects. Special Array Feeds for Limited Field of View and Wideband Arrays.

2,233 citations

Journal ArticleDOI
10 Jan 2013-Nature
TL;DR: This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large- scale deployment.
Abstract: A large-scale silicon nanophotonic phased array with more than 4,000 antennas is demonstrated using a state-of-the-art complementary metal-oxide–semiconductor (CMOS) process, enabling arbitrary holograms with tunability, which brings phased arrays to many new technological territories. Nanophotonic approaches allow the construction of chip-scale arrays of optical nanoantennas capable of producing radiation patterns in the far field. This could be useful for a range of applications in communications, LADAR (laser detection and ranging) and three-dimensional holography. Until now this technology has been restricted to one-dimensional or small two-dimensional arrays. This paper reports the construction of a large-scale silicon nanophotonic phased array containing 4,096 optical nanoantennas balanced in power and aligned in phase. The array was used to generate a complex radiation pattern—the MIT logo—in the far field. The authors show that this type of nanophotonic phased array can be actively tuned, and in some cases the beam is steerable. Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy1. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays2, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration3. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms4,5,6,7,8 and recently with chip-scale nanophotonics9,10,11,12, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

1,065 citations

Journal ArticleDOI
TL;DR: A detailed description of phased-array operation and design is presented and an overview of the most important applications is given.
Abstract: Wavelength multiplexers, demultiplexers and routers based on optical phased arrays play a key role in multiwavelength telecommunication links and networks. In this paper, a detailed description of phased-array operation and design is presented and an overview is given of the most important applications.

962 citations

Journal ArticleDOI
01 Feb 1996
TL;DR: In this paper, a phase profile is imposed on an optical beam as it is either transmitted through or reflected from the phase shifter array, and the imposed phase profile steers, focuses, fans out, or corrects phase aberrations on the beam.
Abstract: Optical phased arrays represent an enabling new technology that makes possible simple affordable, lightweight, optical sensors offering very precise stabilization, random-access pointing programmable multiple simultaneous beams, a dynamic focus/defocus capability, and moderate to excellent optical power handling capability. These new arrays steer or otherwise operate on an already formed beam. A phase profile is imposed on an optical beam as it is either transmitted through or reflected from the phase shifter array. The imposed phase profile steers, focuses, fans out, or corrects phase aberrations on the beam. The array of optical phase shifters is realized through lithographic patterning of an electrical addressing network on the superstrate of a liquid crystal waveplate. Refractive index changes sufficiently large to realize full-wave differential phase shifts can be effected using low (<10 V) voltages applied to the liquid crystal phase plate electrodes. High efficiency large-angle steering with phased arrays requires phase shifter spacing on the order of a wavelength or less; consequently addressing issues make 1-D optical arrays much more practical than 2-D arrays. Orthogonal oriented 1-D phased arrays are used to deflect a beam in both dimensions. Optical phased arrays with apertures on the order of 4 cm by 4 cm have been fabricated for steering green, red, 1.06 /spl mu/m, and 10.6 /spl mu/m radiation. System concepts that include a passive acquisition sensor as well as a laser radar are presented.

689 citations

Journal ArticleDOI
TL;DR: The authors describe the design considerations and preliminary evaluation of a high-speed, online volumetric ultrasound imaging system that uses the principles of pulse-echo, phased array scanning with a 2-D array transducer.
Abstract: Transducer design and phased array beam steering are developed for a volumetric ultrasound scanner that enables the 3-D visualization of dynamic structures in real time. The authors describe the design considerations and preliminary evaluation of a high-speed, online volumetric ultrasound imaging system that uses the principles of pulse-echo, phased array scanning with a 2-D array transducer. Several 2-D array designs are analyzed for resolution and main lobe-side lobe ratio by simulation using 2-D fast Fourier transform methods. Fabrication techniques are described for 2-D array transducer. Experimental measurements of pulse-echo point spread responses for 2-D arrays agree with the simulations. Measurements of pulse-echo sensitivity, bandwidth, and crosstalk are included. >

564 citations


Network Information
Related Topics (5)
Antenna (radio)
208K papers, 1.8M citations
87% related
Resonator
76.5K papers, 1M citations
84% related
Metamaterial
30.2K papers, 755.5K citations
84% related
Amplifier
163.9K papers, 1.3M citations
84% related
Photonic crystal
43.4K papers, 887K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
2022181
202189
2020111
2019109
201883