scispace - formally typeset
Search or ask a question

Showing papers on "Phenocryst published in 2013"


Journal ArticleDOI
TL;DR: In this article, the authors studied the H2O contents of the least degassed melt inclusions from each volcano and found that the mean and common average values for H2Os are within one s.d.

400 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed and experimentally reproduced the mineral assemblage and glass chemistry in rhyolite magma produced in the most recent eruption of Cordon Caulle, and used these to infer magma storage and ascent conditions.
Abstract: The last three eruptions at the Cordon Caulle volcanic complex, Chile, have been strikingly similar in that they have started with relatively short pre-eruptive warning and produced chemically homogeneous rhyolite to rhyodacite magma with glassy to aphyric texture. These characteristics collectively call for an understanding of the storage conditions leading to the rise and extraction of crystal-poor silicic magma from volcanoes. We have analyzed and experimentally reproduced the mineral assemblage and glass chemistry in rhyolite magma produced in the most recent eruption of Cordon Caulle, and we use these to infer magma storage and ascent conditions. Fe–Ti oxide mineral geothermometry suggests that the rhyolite was stored at ∼870–920 °C. At these temperatures, the phenocryst assemblage (plag∼An37 > cpx + opx > mag + ilm) can be reproduced under H2O-saturated conditions of between 100 and 50 MPa, corresponding to crustal depths between about 2.5 and 5.0 km. The shallow and relatively hot magma storage conditions have implications for the rapid onset, degassing efficiency, and progression from explosive to mixed pyroclastic-effusive eruption style at Cordon Caulle.

148 citations


Journal ArticleDOI
TL;DR: The olivine macrocrysts found in oceanites, picrites and magnesian basalts erupted at hotspot volcanoes are generally interpreted either as phenocrysts crystallized from the magma or as xenocrysts extracted from a deforming cumulate as mentioned in this paper.
Abstract: The olivine macrocrysts found in oceanites, picrites and magnesian basalts erupted at hotspot volcanoes are generally interpreted either as phenocrysts crystallized from the magma or as xenocrysts extracted from a deforming cumulate. To constrain the origin of these crystals we studied their texture and composition at Piton de la Fournaise volcano, La Reunion. We show that macrocrysts are organized and subdivided into parallel units; this suggests a crystallization by dendritic growth and ripening rather than by a complex combination of paired nucleation, crystal aggregation or synneusis. Dendritic growth is also evidenced by the occurrence of hollow faces, P-rich zones, melt and Cr-spinel inclusions formed from the accumulation of slow diffusing impurities (P, Cr, Al) in the liquid at the contact with rapid-growing olivine. We suggest that early dendritic crystallization may even cause branch misorientations and lattice mismatches, yielding subgrain boundaries, dislocation lamellae and to a certain extent undulose extinction, which have all been formerly interpreted in terms of plastic intracrystalline deformation. We interpret olivine macrocrysts as phenocrysts crystallized under a strong degree of undercooling (-ΔT > 60°C), and derived from a harrisitic mush formed on the cold walls of the magma reservoir. Given the growth shapes indicated by P zoning patterns and external faces, the olivine macrocrysts (which consist of groups of several subcrystals) have grown in suspension within the liquid and were neither aggregated into a dense cumulate nor corroded, shocked or deformed before or during their transport to the surface. The major consequence of our study is that most olivine macrocrysts are not xenocrysts, and very few of them, if any, have experienced intracrystalline deformation. The importance of deforming (creeping) cumulate bodies, thought to accommodate the spreading of basaltic volcanoes in La Reunion and Hawaii, may hence have been overestimated.

136 citations


Journal ArticleDOI
TL;DR: In this article, a zoned olivine phenocryst from Kilauea Iki lava lake (Hawaii) was selected for a study to evaluate the potential of Mg and Fe isotopes for distinguishing these two processes.

115 citations


Journal ArticleDOI
TL;DR: A list of inviolate Magmatic First Principles that are relevant to analyzing most magmatic problems is given in this article. But the authors do not discuss the physical aspects of these processes and their relationship to the spatial variations in rock composition, texture and macroscopic features like layering.
Abstract: The age-old process of crystal fractionation leading to the diversity of the igneous rocks and Earth itself is an exceedingly well-understood chemical process in magmatism and physical chemistry. But the broader physical aspects of this and related processes have proven elusive on many fronts, especially in its relation to the spatial variations in rock composition, texture, and macroscopic features like layering. Magmatic systems, be they volcanic, dikes, sills, or plutons, are generally analyzed with a problem at hand and an end result in mind. The processes invoked to solve these problems, which are most often purely chemical, are often unique to each problem with few if any general principles emerging that are central to understanding the wider perspective of magmatic processes and problems. An attempt is made at the outset to provide a list of inviolate Magmatic First Principles that are relevant to analyzing most magmatic problems. These involve: initial conditions; critical crystallinity; solidification fronts; transport and emplacement fluxes; phenocrysts, xenocrysts, primocrysts; crystal size; layering and crystal sorting; thermal convection; magmatic processes are physical. Along with these principles, two reference magmatic systems are suggested where the initial conditions and outcome are unequivocal: the Sudbury impact melt sheet and the Hawaiian lava lakes. Sudbury formed in ~5 min by superheated magma crystallized to a near uniform sequence, while the tiny lava lakes, formed of crystal-laden slurries, form a highly differentiated layered sequence. The major difference is in the initial conditions of formation, especially the nature of the input materials. The challenge is to construct and analyze magmatic systems (i.e., magma chambers, sills, dikes, and lavas) using these reference end members and the suggested principles. The Hawaiian 500,000 year volcanic record exhibits what can be expected as input materials, namely a highly varied output of magma of an overall composition reflecting the abundance of entrained olivine primocrysts. The provenance of these crystals is varied, and within any single sample, the population may be highly heterogeneous in composition from crystal to crystal, yet the overall pattern of chemical fractionation is exceedingly regular and well defined. If similar inputs go to form large intrusions, these systems will undoubtedly be dominated by crystal-rich slurries, which provide a vast set of physical processes promoting exotic layering and, at the same time, given the effects of annealing and continued crystal growth, a final chemical record adhering to all the time-honored effects of crystal fractionation. The long assumed initial condition of instantaneously emplaced crystal-free magmas cannot reasonably produce the observed rock records.

104 citations


Journal ArticleDOI
TL;DR: In this paper, high-precision oxygen three-isotope measurements of olivine and pyroxene were performed on 33 chondrules in the Yamato 81020 CO3.

101 citations


Journal ArticleDOI
Abstract: The evolution of basaltic magmas depends on their redox state, hence oxygen fugacity, but there is increasing evidence that this intensive thermodynamic variable may be less well understood in basalts than commonly supposed. The redox state of terrestrial basalts has to a large extent been inferred from the Fe3+/Fe2+ ratios of their quenched glasses. However, this quantity appears to be significantly affected during late and post-eruptive processes in magmatic systems (e.g. by degassing, charge-transfer reactions of redox-variable species, and alteration), so that the degree to which the Fe3+/Fe2+ ratios preserved in basaltic glasses reflect the oxidation state of the magma at high temperature is unclear. Because olivine is the first silicate mineral to crystallize from primitive basaltic liquids on cooling following decompression, the equilibrium partitioning relations preserved in olivine phenocrysts in basalts are, in principle, less disturbed by these late and post-eruptive processes and, therefore, may better reflect the high-temperature (pre-eruptive) conditions of the magma. Here we calibrate an oxybarometer based on the strong sensitivity of the partitioning of vanadium between olivine and silicate melt to oxygen fugacity. Our empirical parameterization, calibrated over a range of redox conditions between four log(10) units above and below the quartz-fayalite-magnetite (QFM) oxygen buffer, takes into account the effects of temperature, olivine composition (i.e. Mg/Fe ratios) and melt composition (namely the activities of CaO, SiO2, AlO1 center dot 5, NaO0 center dot 5 and KO0 center dot 5), and allows oxygen fugacity determinations to within similar to 0 center dot 25 log(10) units. We also explore the sensitivity of the exchange partitioning of Sc and Y between olivine and melt to temperature as a geothermometer. Our calibration indicates that this geothermometer allows temperature to be estimated to within 15 degrees C, but precision is strongly dependent on the Sc and Y measurements in olivine and melt.

99 citations


Journal ArticleDOI
TL;DR: The appinite suite as mentioned in this paper is a group of coeval plutonic and/or hypabyssal rocks, ranging from ultramafic to felsic in composition in which hornblende is the dominant mafic mineral.

91 citations


Journal ArticleDOI
17 Jan 2013-Nature
TL;DR: It is proposed that a less-degassed nickel-rich source formed by core–mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes.
Abstract: High (3)He/(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core-mantle boundary region since Earth's accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core-mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high (3)He/(4)He. We propose that a less-degassed nickel-rich source formed by core-mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core-mantle boundary.

87 citations


Journal ArticleDOI
TL;DR: In this paper, a large database of previously published quartz-hosted glass inclusion compositions is used to derive crystallization temperatures for all inclusions from both early- and late-erupted pumice.
Abstract: The Bishop Tuff, one of the most extensively studied high-silica rhyolite bodies in the world, is usually considered as the archetypical example of a deposit formed from a magma body characterized by thermal and compositional vertical stratification—what we call the Standard Model for the Bishop magma body. We present here new geothermometry and geobarometry results derived using a large database of previously published quartz-hosted glass inclusion compositions. Assuming equilibrium between melt and an assemblage composed of quartz, ±plagioclase, ±sanidine, +zircon, ±fluid, we use Zr contents in glass inclusions to derive quartz crystallization temperatures, and we use (1) silica contents in glass, (2) projection of glass compositions onto the haplogranitic (quartz-albite-orthoclase) ternary, and (3) phase equilibria calculations using rhyolite-MELTS, to constrain crystallization pressures. We find crystallization temperatures of ~740–750 °C for all inclusions from both early- and late-erupted pumice. Crystallization pressures for both early- and late-erupted inclusions are also very similar to each other, with averages of ~175–200 MPa. We find no evidence of late-erupted inclusions having been entrapped at higher temperatures or pressures than early-erupted inclusions, as would be expected by the Standard Model. We argue that the thermal gradient inferred from Fe–Ti oxides—the backbone of the Standard Model—does not reflect equilibrium pre-eruptive conditions; we also note that H2O–CO2 systematics of glass inclusions yields overlapping pressure ranges for early- and late-erupted inclusions, similar to the results presented here; and we show that glass inclusion and phenocryst compositions show bimodal distributions, suggestive of compositional separation between early- and late-erupted populations. These findings are inconsistent with the Standard Model. The similarity in crystallization conditions and the compositional separation between early- and late-erupted magmas suggest that two laterally juxtaposed independent magma reservoirs existed in the same region at the same time and co-erupted to form the Long Valley Caldera and the Bishop Tuff. This hypothesis would explain the lack of mixing between early- and late-erupted crystal populations in pumice clasts; it could also explain the inferred eruption pattern—which resulted in early-erupted magmas being deposited only to the south of the caldera—if the early-erupted magma body resided to the south and the late-erupted magma body was located to the north. Our alternative model is consistent with the patchy distribution of thermal anomalies and the inference of co-eruption of distinct magma types in active volcanic areas such as the central Taupo Volcanic Zone.

81 citations


Journal ArticleDOI
TL;DR: In this paper, a study of the hypabyssal kimberlite with particularly fresh olivine from the Palaeogene Koala pipe (Ekati cluster, Slave craton, Canada) is focused on reconstruction of the kimberslide parental melt.

Journal ArticleDOI
TL;DR: The Dexing porphyry as discussed by the authors is associated with mid-Jurassic granodioritic porphyries with three high-level intrusive centers, controlled by a series of lineaments at the southeastern edge of the Yangtze block.
Abstract: The Dexing porphyry Cu–Mo–Au deposit in east China (1,168 Mt at 0.45 % Cu) is located in the interior of the South China Craton (SCC), made up of two lithospheric blocks, the Yangtze and Cathaysia blocks. The Cu–Mo–Au mineralization is associated with mid-Jurassic granodioritic porphyries with three high-level intrusive centers, controlled by a series of lineaments at the southeastern edge of the Yangtze block. Available age data define a short duration (172–170 Ma) of the felsic magmatism and the mineralization (171 ± 1 Ma). The deposit shows broad similarities with deposits in volcanoplutonic arcs, although it was formed in an intracontinental setting. Porphyries associated with mineralization are mainly granodiorites, which contain abundant phenocrysts (40–60 %) and carry contemporaneous microgranular mafic enclaves (MMEs). They are mainly high-K calc-alkaline and show geochemical affinities with adakite, characterized by relatively high MgO, Cr, Ni, Th, and Th/Ce ratios. The least-altered porphyries yielded relatively uniform e Nd(t) values from −0.9 to +0.6, and wide (87Sr/86Sr)i range between 0.7046 and 0.7058 partially overlapping with the Sr–Nd isotopic compositions of the MMEs and mid-Jurassic mafic rocks in the SCC. Zircons from the porphyries have positive e Hf(t) values (3.4 to 6.9), and low δ18O values (4.7 to 6.3 ‰), generally close to those of depleted mantle. All data suggest an origin by partial melting of a thickened juvenile lower crust involving mantle components (e.g., Neoproterozoic mafic arc magmas), triggered by invasion of contemporaneous mafic melts at Dexing. The MMEs show textural, mineralogical, and chemical evidence for an origin as xenoliths formed by injection of mafic melts into the felsic magmas. These MMEs usually contain magmatic chalcopyrite, and have original, variable contents of Cu (up to 500 ppm). Their geochemical characteristics suggest that they were derived from an enriched mantle source, metasomatized by Proterozoic slab-derived fluids, and supplied a part of Cu, Au, and S for the Dexing porphyry system during their injection into the felsic magmas. The 171 ± 1 Ma magmatic-hydrothermal event at Dexing is contemporaneous with the mid-Jurassic extension in the SCC, followed by 160–90 Ma arc-like magmatism in southeastern China. With respect to the tectono-magmatic evolution of the SCC, the emplacement of Cu-bearing porphyries and the associated Cu mineralization occurred in response to the transformation from a tensional regime, related to mid-Jurassic extension, to a transpressional regime, related to the subduction of the Paleo-Pacific oceanic lithosphere.

Journal ArticleDOI
TL;DR: The western Nevada volcanic field is the western third of a belt of calderas through Nevada and western Utah as discussed by the authors, and the presence of at least another 14 are voluminous ash-flow tuffs whose sources are unknown suggests a similar number of undiscovered caldera.
Abstract: The western Nevada volcanic field is the western third of a belt of calderas through Nevada and western Utah. Twenty-three calderas and their caldera-forming tuffs are reasonably well identified in the western Nevada volcanic field, and the presence of at least another 14 areally extensive, apparently voluminous ash-flow tuffs whose sources are unknown suggests a similar number of undiscovered calderas. Eruption and caldera collapse occurred between at least 34.4 and 23.3 Ma and clustered into five ∼0.5–2.7-Ma-long episodes separated by quiescent periods of ∼1.4 Ma. One eruption and caldera collapse occurred at 19.5 Ma. Intermediate to silicic lavas or shallow intrusions commonly preceded caldera-forming eruptions by 1–6 Ma in any specific area. Caldera-related as well as other magmatism migrated from northeast Nevada to the southwest through time, probably resulting from rollback of the formerly shallow-dipping Farallon slab. Calderas are restricted to the area northeast of what was to become the Walker Lane, although intermediate and effusive magmatism continued to migrate to the southwest across the future Walker Lane. Most ash-flow tuffs in the western Nevada volcanic field are rhyolites, with approximately equal numbers of sparsely porphyritic (≤15% phenocrysts) and abundantly porphyritic (∼20–50% phenocrysts) tuffs. Both sparsely and abundantly porphyritic rhyolites commonly show compositional or petrographic evidence of zoning to trachydacites or dacites. At least four tuffs have volumes greater than 1000 km3, with one possibly as much as ∼3000 km3. However, the volumes of most tuffs are difficult to estimate, because many tuffs primarily filled their source calderas and/or flowed and were deposited in paleovalleys, and thus are irregularly distributed. Channelization and westward flow of most tuffs in paleovalleys allowed them to travel great distances, many as much as ∼250 km (original distance) to what is now the western foothills of the Sierra Nevada, which was not a barrier to westward flow of ash flows at that time. At least three tuffs flowed eastward across a north-south paleodivide through central Nevada. That tuffs could flow significant distances apparently uphill raises questions about the absolute elevation of the region and the elevation, relief, and location of the paleodivide. Calderas are equant to slightly elongate, at least 12 km in diameter, and as much as 35 km in longest dimension. Exceptional exposure of two caldera complexes that resulted from extensional faulting and tilting show that calderas subsided as much as 5 km as large piston-like blocks; caldera walls were vertical to steeply inward dipping to depths ≥4–5 km, and topographic walls formed by slumping of wall rock into the caldera were only slightly outboard (≤1 km) of structural margins. Most calderas show abundant post-collapse magmatism expressed as resurgent intrusions, ring-fracture intrusions, or intracaldera lavas that are closely related temporally (∼0–0.5 Ma younger) to caldera formation. Granitoid intrusions, which were emplaced at paleodepths ranging from <1 to ∼7 km, are compositionally similar to both intracaldera ash-flow tuffs and post-caldera lavas. Therefore in the western Nevada volcanic field, erupted caldera-forming tuffs commonly were the upper parts of large magma chambers that retained considerable volumes of magma after tuff eruption. Several calderas in the western Nevada volcanic field hosted large hydrothermal systems and underwent extensive hydrothermal alteration. Different types of hydrothermal systems (neutral-pH alkali-chloride and acid or low-pH magmatic-hydrothermal) may reflect proximity to (depth of) large resurgent intrusions. With the exception of the giant Round Mountain epithermal gold deposit, few known caldera-related hydrothermal systems are strongly mineralized. Major middle Cenozoic precious and base metal mineral deposits in and along the margins of the western Nevada volcanic field are mostly related to intrusive rocks that preceded caldera-forming eruptions.

Journal ArticleDOI
TL;DR: The geochemistry of pyroclasts sampled from four volcanoes along the Kermadec arc in the SW Pacific is used to investigate the genesis of silicic magmas in a young (<2 Myr), archetypical intra-oceanic arc setting as mentioned in this paper.
Abstract: The geochemistry of pyroclasts sampled from four volcanoes along the Kermadec arc in the SW Pacific is used to investigate the genesis of silicic magmas in a young (<2 Myr), archetypical intra-oceanic arc setting. Raoul, Macauley and Raoul SW volcanoes in the northern Kermadec arc, and Healy volcano in the southern Kermadec arc have all recently erupted dacitic to rhyolitic crystal-poor pumice. In addition to whole-rock analyses, we present a detailed study of mineral and glass chemistries to highlight the complex structure of the Kermadec magmatic systems. Major and trace element bulk-rock compositions mostly fall into relatively narrow compositional ranges, forming discrete groups by eruption for Raoul, and varying with relative crystal contents for Healy. In contrast, pumices from Macauley cover a wide range of compositions, between 66 and 72·5 wt % SiO2. At all four volcanoes the trace element patterns of pumice are subparallel to both those of previously erupted basalts and/or whole mafic blebs found both as discrete pyroclasts and as inclusions within pumices. Pb and Sr isotopic compositions have limited ranges within single volcanoes, but vary considerably along the arc, being more radiogenic in the southern volcanoes. Distinctive crystal populations and zonation patterns in pumices, mafic blebs and plutonic xenoliths indicate that many crystals did not grow in the evolved magmas, but are instead mixed from other sources including gabbros and hydrothermally altered tonalites. Such open-system mixing is ubiquitous at the four volcanoes. Oxygen isotope compositions of both phenocrysts (silicic origin) and xenocrysts or antecrysts (mafic origin) are typical for mantle-derived melts. Whole-rock, glass and mineral chemistries are consistent with evolved magmas being generated at each volcano through ∼70–80% crystal fractionation of a basaltic parent. Our results are not consistent with silicic magma generation via crustal anatexis, as previously suggested for these Kermadec arc volcanoes. Although crystallization is the dominant process driving melt evolution in the Kermadec volcanoes, we show that the magmatic systems are open to contributions from both newly arriving melts and wholly crystalline plutonic bodies. Such processes occur in variable proportions between magma batches, and are largely reflected in small-scale chemical variations between eruption units.

Journal ArticleDOI
01 Jul 2013-Lithos
TL;DR: In this paper, the authors present geochronological and geochemical data for pyroxene andesites in Maixiu area, West Qinling, China, and conclude that the petrogenesis of the MPAs in West Qiongling Orogen may have involved magma mixing between melts derived from the sedimentary cover of the northward-subducting A'nyemaqen-Mianlue oceanic slab and peridotite-derived basaltic melts from the overriding mantle wedge during the initial collision stage between the NCB and

Journal ArticleDOI
TL;DR: The Miocene Peach Spring Tuff is a giant pyroclastic deposit that is extensively exposed in the southwestern USA as mentioned in this paper, and the Peach Spring magma body was compositionally and thermally zoned with a basal cumulate, and crystallized over millennial timescales before being remobilized by mafic input prior to erupting.
Abstract: The Miocene Peach Spring Tuff is a giant (� 640 km 3 dense rock equivalent) pyroclastic deposit that is extensively exposed in the southwestern USA. Evidence from geochemical and textural analyses of bulk-rocks, glasses, and accessory minerals (zircon, titanite, allanite, chevkinite, magnetite) from outflow and intra-caldera pumice clasts and fiamme, in combination with field observations and rhyolite-MELTS modeling, suggests that the Peach Spring magma body was compositionally and thermally zoned with a basal cumulate, and that it crystallized over millennial timescales before being remobilized by mafic input prior to erupting. Crystal contents, bulk compositions, spatial distributions, and temperatures (recorded by Ti in zircon and Zr in titanite) of pumice clasts and fiamme vary systematically: distal outflow high-silica rhyolites are crystal-poor and document lower temperatures; intra-caldera trachytes are crystal-rich and record higher temperatures. These variations indicate that the Peach Spring magma body was zoned. We interpret the outflow high-silica rhyolites to represent the first portion of the magma body to erupt. Zircon and titanite display core-to-edge reductions in rare earth element (REE) concentration and temperature, suggestive of relatively uninterrupted crystallization as the magma body cooled; crystallization temperature intervals from rhyoliteMELTS are consistent with those recorded by zircon and titanite. Exponential size distributions for accessory minerals and phenocryst textures are consistent with geochemical evidence for a simple cooling and crystallization history. Intra-caldera trachytes and outflow low-silica rhyolites represent the later portion of the magma body to erupt.This magma experienced a late-stage heating event potentially associated with the onset of the eruption.The edges of titanite crystals are enriched in REE and Zr, and zircon edges are enriched in Ti, suggesting higher temperatures during edge crystallization (at least 9008C). Concave-down crystal size distributions and resorption features on phenocrysts are additional signs of heating. Rare trachyandesite enclaves and the presence of mafic to intermediate lavas immediately underlying the Peach Spring Tuff suggest that a mafic magma input may have been the cause of the heating. Evidence further suggests that the intra-caldera trachytes may represent a remobilized cumulate at the base of the magma body, which retained some melt prior to rejuvenation. Bulk pumice and fiamme compositions are very rich in feldspar and accessory mineral phenocrysts, indicative of accumulation of these minerals; high crystal contents (� 35%) and evidence of heating and resorption imply that this magma was even more crystal-rich prior to the heating event. Rhyolite-MELTS simulations suggest that the trachyte magma had roughly 1wt % water, which cannot be totally accounted for by hydrous phases, thus requiring some amount of melt within the cumulate. Kinked magnetite size distributions are interpreted to represent a change from growth-dominated crystallization (larger crystals, shallow slopes) to nucleation-dominated (small crystals, steep slopes) owing to the onset of eruptive decompression. Timescales of magnetite crystallization calculated from these slopes indicate that the Peach Spring magma body crystallized over millennial timescales, and that eruptive decompression began 10 � 1 ^10 2 years prior to eruption.

Journal ArticleDOI
TL;DR: In this paper, the authors present new O and Hf isotope data and U-Pb geochronology for individual zircons, O isotope values for major phenocrysts (quartz, plagioclase, and pyroxene), whole rock Sr and Nd isotope ratios, and whole rock geochemistry for a suite of Picabo rhyolites.

Journal ArticleDOI
TL;DR: In this article, the authors measured the platinum group element (PGE) and Re concentrations of arc-type lavas from the Pual Ridge and the surrounding area in the Eastern Manus Basin.

Journal ArticleDOI
TL;DR: In this article, it was shown that most K-feldspar growth occurs after the magma crosses the rheologic lock-up threshold of ~50 % crystals, which is consistent with early growth but does not require it.
Abstract: K-feldspar crystals >5 cm in greatest dimension are common in calc-alkaline granites and granodiorites worldwide. Such megacrysts are generally interpreted as having grown to large sizes early in a magma’s crystallization history while they were largely molten, owing to field relations such as megacryst alignment and megacryst-rich clusters and to crystallographic features such as zonally arranged inclusions and sawtooth Ba zoning. These features are consistent with early growth but do not require it. In contrast, experimental petrology, mineral compositions, and natural examples of partial melting of granite demonstrate that K-feldspar is typically the last major phase to crystallize and that most K-feldspar growth occurs after the magma crosses the rheologic lock-up threshold of ~50 % crystals. The near-absence of K-feldspar phenocrysts in dacite lavas and tuffs, even in highly crystalline ones, demonstrates that natural magmas do not precipitate significant K-feldspar while they are mobile. The highly potassic compositions of megacrysts (and indeed, of K-feldspar in non-megacrystic granites as well) require exsolution of albite component down to temperatures of ~400 °C. The low Ca contents of megacrysts cannot result from exsolution of anorthite and must represent recrystallization of the crystals at low temperature. These mineralogical and experimental constraints require that K-feldspar megacrysts indicate widespread and thorough recrystallization of the host granites and granodiorites.

Journal ArticleDOI
01 Jul 2013-Lithos
TL;DR: The first comprehensive analysis of the geology, petrology and origin of the Dashuang pluton in Jinhua, eastern Zhejiang, South China is reported in this article.

Journal ArticleDOI
TL;DR: In this paper, the most primitive pahoehoe “cicirara” lava sampled until now was investigated on the basis of their mineral compositional variations and textural features, i.e., size frequency and crystal size distribution (CSD).
Abstract: The solidified surface of a lava flow reflects the viscosity of its molten fraction and the crystal content during flow; crystal-poor basaltic lavas produce pahoehoe fields, whereas crystal-rich ones solidify with aa carapaces. At Mount Etna, volcano aa morphologies are very common, whereas pahoehoe lavas are rare. The latter are locally named “cicirara” due to the presence of centimeter-sized plagioclase phenocrysts much more abundant than in aa lavas. The phenocryst content of “cicirara” lavas contrasts with the low viscosity generally associated with pahoehoe morphology. Therefore, to reconcile the discrepancy between textural and volcanic observations, we have studied the most primitive pahoehoe “cicirara” lava sampled until now. Two samples at 0.5 and 1 m from the bottom of the 2-m thick lava flow were investigated on the basis of their mineral compositional variations and textural features, i.e., size frequency and crystal size distribution (CSD). Results coupled with rheological models indicate that only large phenocrysts of plagioclase (>1 mm) and clinopyroxene have grown before eruption. Thermobarometric models and petrological computations based on the composition of plagioclase and clinopyroxene phenocryst cores highlight that only a small amount (10–15 vol.%) of crystals equilibrated at 12 km of depth. Cumulative size frequency and CSD data also indicate that plagioclase and clinopyroxene phenocryst rims grew heterogeneously and coalesced around their cores at depths <1 km, before eruption. In this view, the “cicirara” lava was erupted with a low crystalline content that favoured the formation of its pahoehoe surface; however, crystals with a size <1 mm (~75 vol.%) solidified at post-eruptive conditions. Our findings underline that the emplacement of high-viscosity aa or low-viscosity pahoehoe lavas is driven by the degree of undercooling imposed by the volatile exsolution rate in the shallowest portion of the Etnean plumbing system. A slow magma ascent rate promotes significant intratelluric degassing and widespread nucleation; consequently, the viscosity of the suspension significantly increases leading to an aa morphology. In contrast, pahoehoe “cicirara” lavas are associated with a rapid rise to the surface of poorly degassed, undercooled magmas.

Journal ArticleDOI
01 Jul 2013-Lithos
TL;DR: In this article, the Eocene Borcka volcanic rocks on the eastern corner of the eastern Pontide orogenic belt (NE Turkey) are divided into three suites, namely, basic dyke, basalt, and Civankoy suite.

Journal ArticleDOI
TL;DR: In this paper, the authors interpret that the 2009 Redoubt volcano erupted from depth during 8 or more months prior to the first eruption, but that the magma stalled and accumulated in the upper crust where its phenocryst rim and melt compositions were established.

Journal ArticleDOI
TL;DR: The kimberlites, kamafugites and phlogopite-picrites of Alto Paranaiba Igneous Province (APIP), southern Brazil, span a range between ~91 and 78 Ma with new in-situ, more tightly constrained U-Pb ages as discussed by the authors.

Journal ArticleDOI
TL;DR: In this paper, a range of processes during crustal magma storage and transport, including mafic recharge, magma mixing, crystal fractionation, and country rock assimilation are recorded, with the aid of petrological, textural and oxygen isotope analysis.

Journal ArticleDOI
TL;DR: The Aolunhua porphyry complex and its related Mo-Cu deposit from the eastern Central Asian Orogenic Belt (CAOB) provide important insights into this issue as mentioned in this paper.

Journal ArticleDOI
TL;DR: Ischia, a volcanic island located 18 miles SW of Naples (Southern Italy), is a densely populated active caldera that last erupted in AD 1302 as discussed by the authors, which is a natural borehole for probing the physico-chemical conditions of magma generation in mantle contaminated by slab-derived fluids or melts, largely dominated by CO2.
Abstract: Ischia, a volcanic island located 18 miles SWof Naples (Southern Italy), is a densely populated active caldera that last erupted in AD 1302. Melt inclusions in phenocrysts of the Vateliero and Cava Nocelle shoshonite^latite eruptive products (6th to 4th centuries BC) constrain the structure and nature of the Ischia deep magmatic feeding system.Their geochemical characteristics make Ischia a natural borehole for probing the physico-chemical conditions of magma generation in mantle contaminated by slab-derived fluids or melts, largely dominated by CO2.Volatile concentrations in olivine-hosted melt inclusions require gas^melt equilibria at between 3 and 18 km depth. In agreement with what has already been demonstrated at the other neighboring Neapolitan volcanoes (Procida, Campi Flegrei caldera and Somma^Vesuvius volcanic complex), a major crystallization depth at 8^10 km has been identified.The analyzed melt inclusions provide clear evidence for CO2-dominated gas fluxing and consequent dehydration of magma batches stagnating at crustal discontinuities. Gas fluxing is further supported by selective enrichment in K owing to fluid-transfer during magma differentiation.This takes place under oxidized conditions (Fe3þ/ Fe 0·3) that can be fixed by an equimolar proportion of divalent and trivalent iron in the melt if post-entrapment crystallization of the host olivine is discarded.The melt inclusion data, together with data from the literature for other Neapolitan volcanoes, show that magmatism and volcanism in the Neapolitan area, despite differences in composition and eruption dynamics, are closely linked to supercritical CO2-rich fluids. These fluids are produced by devolatilization of subducting terrigenous^pelagic metasediments and infiltrate the overlying mantle wedge, generate magmas and control their ascent up to eruption. Geochemical characteristics of Ischia and the other Neapolitan volcanoes reveal that the extent of fluid or melt contamination of the pre-subduction asthenospheric mantle wedge was similar among these volcanoes. However, differences in the isotopic compositions of the erupted magmas (more enriched in radiogenic Sr at Ischia, Campi Flegrei and Somma^Vesuvius with respect to Procida) and the amount of H2O in the plumbing system of these volcanoes (almost double at Ischia, Campi Flegrei and Somma^Vesuvius than at Procida) reflect the different flow-rates of deep slab-derived fluids or melts through the mantle wedge, which, in turn, control the amount of generated magma.The high bulk permeability of the lithosphere below Ischia, Campi Flegrei and Somma^Vesuvius, determined by the occurrence of intersecting NW^SE and NE^SW regional fault systems, favours fluid ascent and accumulation at crustal levels, with consequent larger magma production and storage than at Procida, located along the NE^SWsystem.

Journal ArticleDOI
01 Oct 2013-Lithos
TL;DR: The East Junggar granitoids were emplaced during terminal Early to Late Carboniferous (325-301 ǫ) following volcanic eruption of the Batamayi Formation as mentioned in this paper.

Journal ArticleDOI
TL;DR: In this article, the authors estimated time scales of magma-mixing processes just prior to the 2011 sub-Plinian eruptions of Shinmoedake volcano to investigate the mechanisms of the triggering processes of these eruptions.
Abstract: We estimated time scales of magma-mixing processes just prior to the 2011 sub-Plinian eruptions of Shinmoedake volcano to investigate the mechanisms of the triggering processes of these eruptions. The sequence of these eruptions serves as an ideal example to investigate eruption mechanisms because the available geophysical and petrological observations can be combined for interpretation of magmatic processes. The eruptive products were mainly phenocryst-rich (28 vol%) andesitic pumice (SiO2 57 wt%) with a small amount of more silicic pumice (SiO2 62–63 wt%) and banded pumice. These pumices were formed by mixing of low-temperature mushy silicic magma (dacite) and high-temperature mafic magma (basalt or basaltic andesite). We calculated the time scales on the basis of zoning analysis of magnetite phenocrysts and diffusion calculations, and we compared the derived time scales with those of volcanic inflation/deflation observations. The magnetite data revealed that a significant mixing process (mixing I) occurred 0.4 to 3 days before the eruptions (pre-eruptive mixing) and likely triggered the eruptions. This mixing process was not accompanied by significant crustal deformation, indicating that the process was not accompanied by a significant change in volume of the magma chamber. We propose magmatic overturn or melt accumulation within the magma chamber as a possible process. A subordinate mixing process (mixing II) also occurred only several hours before the eruptions, likely during magma ascent (syn-eruptive mixing). However, we interpret mafic injection to have begun more than several tens of days prior to mixing I, likely occurring with the beginning of the inflation (December 2009). The injection did not instantaneously cause an eruption but could have resulted in stable stratified magma layers to form a hybrid andesitic magma (mobile layer). This hybrid andesite then formed the main eruptive component of the 2011 eruptions of Shinmoedake.

Journal ArticleDOI
TL;DR: The Iceland Deep Drilling Project Well 1 was designed as a 4-to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland.
Abstract: The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagne- tite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (*16 MPa) and below lithostatic (*55 MPa). The major element and minor element com- position of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera.