scispace - formally typeset
Search or ask a question

Showing papers on "Phenocryst published in 2020"


Journal ArticleDOI
TL;DR: In this article, two populations of monazite are identified within a mineralized dacite located along a major shear zone, and the Zaozigou Au-Sb deposit is best classified as an epizonal orogenic gold deposit.
Abstract: Understanding the relationship between mineral occurrences and host granitic rocks can be controversial. The Zaozigou Au-Sb deposit (118 t Au, 0.12 Mt Sb), hosted in metasedimentary rocks and dacitic to granodioritic sills and dikes, is one such example of a large gold deposit argued to have formed from either magmatic or metamorphic hydrothermal processes. Two populations of monazite are identified within a mineralized dacite located along a major shear zone. Magmatic monazite commonly occurs within magmatic biotite and quartz phenocrysts and is characterized by uniform and high Th concentrations. It has a crystallization age of 238.3 ± 2.6 Ma, consistent with the zircon U-Pb age of 238.0 ± 1.8 Ma from the same dacite. Hydrothermal monazite is associated with sulfides and sericite, and has a 207Pb-corrected 206Pb/238U age of 211.1 ± 3.0 Ma. The amount of Th in hydrothermal monazite is widely variable. The low Th content of some monazite grains reflects direct precipitation from a metamorphic hydrothermal fluid. Furthermore, the elevated Th content in other hydrothermal monazite grains is likely due to the release of Th (and U) into hydrothermal fluids by dissolution of pre-existing Th-rich minerals in the country rock during ore-related alteration events. The magmatism, which overlaps Middle-Late Triassic terrane subduction-accretion in the West Qinling orogen, thus pre-dates the ore-forming event by about 30 m.y. The δ34S values of pyrite, arsenopyrite, stibnite, marcasite, and chalcopyrite from disseminated- and vein-type ores range from − 12.0 to − 5.5‰. Such negative values are distinct from those measured for other deposits in the northwestern part of the orogen that are genetically related to Triassic magmatism, including the Xiekeng-Jiangligou-Shuangpengxi Cu-Au-Fe-Mo skarn, Laodou reduced intrusion-related Au, and Gangcha epithermal Au ores. The Zaozigou deposit is best classified as an epizonal orogenic Au-Sb deposit. Our results demonstrate the usefulness of high-precision in situ geochronology on monazite for deciphering age relationships in ore deposits that have spatial associations with granitic rocks, thus aiding in the testing of the veracity of ore formation models.

104 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that the geochemical diversity of TTG plutons from South Africa do not represent liquids but fossil, crystal-rich magma reservoirs left behind by the eruption of silicic volcanic rocks, being possibly coeval at the million-year scale as constrained by high-precision uranium-lead geochronology.
Abstract: Granitoids of the tonalite–trondhjemite–granodiorite (TTG) series dominate Earth’s earliest continental crust. The geochemical diversity of TTGs is ascribed to several possible geodynamic settings of magma formation, from low-pressure differentiation of oceanic plateaus to high-pressure melting of mafic crust at convergent plate margins. These interpretations implicitly assume that the bulk-rock compositions of TTGs did not change from magma generation in the source to complete crystallization. However, crystal–liquid segregation influences the geochemistry of felsic magmas, as shown by the textural and chemical complementarity between coeval plutons and silicic volcanic rocks in the Phanerozoic Eon. We demonstrate here that Paleoarchean (ca. 3,456 million years old) TTG plutons from South Africa do not represent liquids but fossil, crystal-rich magma reservoirs left behind by the eruption of silicic volcanic rocks, being possibly coeval at the million-year scale as constrained by high-precision uranium–lead geochronology. The chemical signature of the dominant trondhjemites, conventionally interpreted as melts generated by high-pressure melting of basalts, reflects the combined accumulation of plagioclase phenocrysts and loss of interstitial liquid that erupted as silicic volcanic rocks. Our results indicate that the entire compositional diversity of TTGs could derive from the upper crustal differentiation of a single, tonalitic magma formed by basalt melting and/or crystallization at <40 km depth. These results call for a unifying model of Hadean–Archean continent nucleation by intracrustal production of TTG magmas. The chemical diversity of Earth’s early continental building blocks can be explained by differentiation of a single melt, without complex geodynamic settings, according to petrological and geochemical analysis of samples from South Africa.

90 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present new whole-rock, glass and mineral compositions for nine examples of zoned felsic units, across the spectrum of alumina- and silica-saturation.

41 citations


Journal ArticleDOI
01 May 2020-Lithos
TL;DR: In this paper, a distinct phase in the life of Stromboli volcano is evident from the 2003 paroxysm onwards, and the authors compare clinopyroxenes from the present-day and Post-Pizzo eruptions.

40 citations


Journal ArticleDOI
TL;DR: In this article, a complete magmatic record including Early Carboniferous fore-arc basalts (FABs), transitional lavas and boninites in the Diyanmiao ophiolite zone in central Inner Mongolia, North China is reported.

35 citations


Journal ArticleDOI
TL;DR: The Masaya Triple Layer tephra was deposited ~2100-years ago during a basaltic Plinian eruption of Masaya caldera, Nicaragua, and is one of few known examples of this extreme endmember of basaltitic explosive volcanism as mentioned in this paper.

27 citations


Journal ArticleDOI
01 Dec 2020-Lithos
TL;DR: The plagioclase phenocrysts are zoned, with high An% cores characterized by resorption textures and mantled by euhedral low-An% rims as discussed by the authors.

26 citations


Journal ArticleDOI
TL;DR: In this paper, a water-in-olivine chronometer was used to estimate the syneruptive decompression rate of basaltic magma in volcanic conduits.

25 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented the mineral chemistry, zircon U-Pb ages and L-Hf isotopes, whole-rock chemistry and S-Nd isotope compositions of the mafic microgranular enclaves and host granodiorite from the Huda pluton in the Elashan area within the easternmost domain of the EKOB.

25 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the petrological characteristics of rhyolite magma that has erupted before, during and after the caldera-forming eruption of the Aira Caldera, Japan.
Abstract: The sudden destabilization of voluminous magma after stable accumulation in a crustal magma chamber is a key process in the sequence of a catastrophic caldera-forming eruption. We investigated the petrological characteristics of magma that has erupted before, during and after the caldera-forming eruption of the Aira Caldera, Japan. This provides an example of the evolution of a rhyolite magma system during a catastrophic caldera-forming eruption. Stratigraphic and petrological investigations on the pre-caldera eruptive materials showed accumulation of high-silica rhyolite 4–5 km below the ground surface, which commenced at least ~ 30,000 years prior to the caldera-forming eruption. A part of the accumulated rhyolite magma leaked from the chamber and caused several pre-caldera eruptions. Phase equilibrium relationships and water concentrations in glass inclusions in phenocrysts suggest that the vertical extension of rhyolite magma chamber was 2–2.5 km. The rhyolite magma maintained a temperature between 735 and 800 °C and crystal mush state with 20–50% of crystallinity during its accumulation. The injection of mafic magmas destabilized the stored magma. Further, the heating of the rhyolite magma to 780–840 °C by the heat transfer from the mafic magma decreased the crystallinity down to 10% and induced mobilization of the stored rhyolite magmas. The remobilized magma could erupt as the Plinian eruption at the beginning and produced the Osumi pumice-fall deposit. This deposit occupies approximately 10% of the total volume of the erupted magma during the caldera-forming eruption. Though the extraction of rhyolite magma was limited to part of the magma chamber, decompression of the magma chamber by the magma extraction was enough to induce the caldera collapse and resulted in the eruption of the main ignimbrite (Ito ignimbrite) from the rest of the magma chamber. The volume of the erupted magma during the caldera-forming eruption is comparable with that of the magma chamber. New rhyolite magma with discernible composition from the rhyolite magmas of the caldera-forming eruption started accumulating in the magma chamber following the caldera-forming eruption and was the source for the post-caldera eruptions.

19 citations


Journal ArticleDOI
01 Jan 2020-Lithos
TL;DR: In this article, the in situ major and trace element compositions of clinopyroxene in co-genetic basalts, andesites, trachyandesites and rhyolites from the Iheya Ridge in the middle Okinawa Trough are examined to determine their petrogenesis and the influence of slab subduction.

Journal ArticleDOI
01 Jun 2020-Lithos
TL;DR: In this article, the authors analyzed the early Cretaceous intermediate-mafic dike swarms in the Liaodong Peninsula to decipher the timing and mechanism of lithospheric thinning of the NCC.

Journal ArticleDOI
TL;DR: In this paper, the dates of sample emplacement have been determined using satellite-derived high-resolution thermal infrared maps, and the results enhance the understanding of this potentially dangerous volcano, which helps to interpret future pre-eruptive unrest.
Abstract: Phenocrysts in volcanic rocks are recorders of magmatic processes that have occurred at depth before and during a volcanic eruption. Our petrological investigations of stratigraphically controlled tephrite and phonotephrite samples from the latest eruption of Fogo (Cape Verde Islands) aimed to reconstructing magma storage and transport. The dates of sample emplacement have been determined using satellite instrument - derived high resolution thermal infrared maps. All samples are strongly phyric and commonly contain complexly zoned clinopyroxene crystals and cumulate fragments. Clinopyroxenes from all samples exhibit 10-50 µm wide rim zones, inferred to have grown in a few days to weeks during the ongoing eruption as a consequence of H2O loss from the melt. Clinopyroxene-melt thermobarometry using tephrite groundmass compositions suggests that the rims formed at upper mantle pressures of around 600 MPa (21 km depth). This level is interpreted to reflect temporary reduction in magma ascent velocity by near-isobaric movement through a complex storage system. Previously, the tephrite magma had accumulated at a deeper level, possibly between 700 and 900 MPa as indicated by clinopyroxene cores (Mata et al., 2017). The cause for H2O loss initiating rim growth could be degassing after rise of the magma from the deeper level, or CO2 flushing by a carbonic fluid phase released at depth. Corresponding data from phonotephrites indicate last equilibration at around 440 MPa (16 km); the phonotephrite magma is inferred to be a residuum from an earlier magmatic event that was entrained by advancing tephrite. Microthermometry of CO2-dominated fluid inclusions in tephrite clinopyroxenes results in pressures of around 330 MPa (12 km), indicating another short pause in magma ascent in the lowermost crust. Rim zonations of olivine phenocrysts indicate that after leaving this final stalling zone, the magma ascended to the surface in less than half a day. In strong contrast to these petrological equilibration depths, seismic events precursory to the eruption were located at <5 km below sea level, with only two exceptions at 17 and 21 km depth consistent with our barometry. Our results enhance the understanding of this potentially dangerous volcano, which helps to interpret future pre-eruptive unrest.

Journal ArticleDOI
01 Mar 2020-Lithos
TL;DR: In this paper, a representative clinopyroxene phenocryst from the 1974 eccentric lava flows at Mt. Etna volcano was analyzed by Rayleigh fractional crystallization, and the results indicated that the early-formed Jd-rich core equilibrated with the host magma at mantle depths (750 −950 −MPa and 1190 −1210 −°C), whereas the later CaTs-rich mantle formed at shallower crustal levels (400 −700 − MPa and 1150 −1180 −C) after magma recharge.

Journal ArticleDOI
TL;DR: In this article, the authors measured total and connected porosities, permeability, and connectivity with measurements of crystallinity, Microlite Number Density (MND) and Microlite Size Distribution (MSD) of plagioclases and pyroxenes.

Journal ArticleDOI
TL;DR: In this paper, the growth rate of clinopyroxene phenocrysts and microlite populations in the Campi Flegrei Volcanic District (CFVD) was investigated at high pressure.
Abstract: Clinopyroxene growth rates were experimentally determined in a K-basaltic rock from Campi Flegrei Volcanic District (south Italy). The primary objective was to provide constraints on the clinopyroxene crystallization kinetics at high pressure: we carried out a series of experiments at 0.8 GPa, 1030–1250 °C, 1 ≤ H2O ≤ 4 wt.%, with durations of 0.25, 3, 6 and 9 h. Overall, growth rate reaches a maximum value in the shortest experiments (~ 3·10−7 cm·s−1), decreasing to ~ 1·10−8 cm·s−1 in the longest duration runs. Temperature and water content do not seem to significantly affect the growth rate. Moreover, partition coefficients based on the crystal-liquid exchange show that mineral chemistry progressively approaches equilibrium with increasing run duration. Furthermore, to estimate the magma recharge of the deep reservoirs, we combined the determined growth rates with data from thermobarometry and from crystal size distribution analyses of clinopyroxenes in the most primitive scoria clasts of the Campi Flegrei Volcanic District (CFVD). We obtained a minimum residence time of ~ 5 months for the larger clinopyroxene population, and an ascent velocity of ~ 0.5·10−4 m·s−1 for the CFVD K-basaltic magma. The smaller clinopyroxene phenocrysts and microlite populations, however, suggest that the late stage of Procida magma crystallization took place in disequilibrium conditions.

Journal ArticleDOI
TL;DR: In this article, a genetic model for the conditions and timing of storage and re-activation of the Laacher See volcano prior to the eruption was presented, which is the largest volcanic event in Central Europe since the last glaciation.
Abstract: Ba zonation patterns in sanidine phenocrysts from mafic and intermediate phonolite and crystal-rich cumulates from the Laacher See volcano (12.9 ka) in western Germany document diffusion times suggestive of periodic recharge events throughout the magma reservoir’s entire lifespan of ~ 24 ky. Phenocrysts analysed from samples that formed late at the base of the compositionally zoned magma reservoir by mixing and mingling between a resident phonolite magma and recharging basanite show resorption and thin (2–10 μm) late-stage Ba-rich overgrowth. Short diffusion profiles across these boundaries give diffusion times of ~ 1.5–3 years at most, which are interpreted to be the maximum duration between the most recent recharge by the basanite and eruption. The lack of such late overgrowth in samples from other parts of the phonolite reservoir suggests that effect of this mixing and mingling was limited to the crystal-rich base. Sanidines in the cumulates, by contrast, are generally devoid of zoned crystals. Only rare cumulate crystals with resorbed outer boundaries and very thin overgrowths (a few microns) with very sharp compositional changes imply the remobilization of cumulates only months before eruption. Based on the diffusion timescales and storage temperatures obtained in a previous study, we present a genetic model for the conditions and timing of storage and (re-)activation of the magma system prior to the eruption of Laacher See, which is the largest volcanic event in Central Europe since the last glaciation.

Journal ArticleDOI
01 Jan 2020-Lithos
TL;DR: The Utila Volcanic Center (UVC) is Quaternary in age, based on geologic and stratigraphic relations with underlying carbonate rocks and is made up of three distinct, volcanic units: palagonite lapilli tuff, main lava flow and vent facies.

Journal ArticleDOI
TL;DR: In the case of the Black Mountain porphyry Cu-Au deposit in the Baguio district, Northern Luzon (Philippines), pre- and synmineralized rocks preserve magmatic and hydrothermal minerals (e.g., plagioclase, amphibole, titanite, and epidote) spanning the complete paragenesis of the deposit.
Abstract: At the Black Mountain porphyry Cu-Au deposit in the Baguio district, Northern Luzon (Philippines), pre- and synmineralized rocks preserve magmatic and hydrothermal minerals (e.g., plagioclase, amphibole, titanite, and epidote) spanning the complete paragenesis of the deposit. Strontium isotope values in early crystallized plagioclase phenocrysts from all felsic porphyries can be divided into two types. The type-I plagioclase crystals show relatively homogeneous Sr isotope values (0.7035-0.7038, 1σ <0.0001), indicating crystallization from a relatively stable and long-lived felsic magma chamber. The type-II plagioclase grains have a wider range of Sr isotope compositions (0.7032-0.7039, 1σ <0.0001), indicating mafic and/or felsic magma recharge. In magmatic titanite, Nb/Ta values are higher than those in the whole rock, while Zr/Hf and Y/Ho values are lower. In hydrothermal titanite and epidote, the ratios are similar to those in the whole rock. These patterns reflect crystallization effects imposed during the magmatic stage but an absence of differentiation during the hydrothermal stage. The consistent gradual decrease in total rare earth element, Y, Zr, and U contents in both hydrothermal titanite and epidote from early to late stages indicates the effect of hydrothermal fluid evolution with decreasing temperature. The variation of 87Sr/86Sr values in magmatic amphibole, plagioclase, and hydrothermal epidote in felsic and mafic rocks indicates the addition of mafic magma-derived fluid into the felsic magma-derived fluid. One extra source of fluid (probably derived from wall-rock limestone) was required to generate the highly radiogenic 87Sr/86Sr values of some epidote (0.7038-0.7053). Thus, in situ elemental and Sr isotope variation in minerals from different paragenetic stages can be used to interpret formation process and source for both magmas and hydrothermal fluids.

Journal ArticleDOI
TL;DR: In this article, the deformation of the Deception island volcanic suite has been studied and the results of this study combined with exhaustive petrologic knowledge reveal in Deception Island (i) fast ascent and quenching of most magmas, preserving pre-eruptive magmatic signal of water contents and isotopic ratios, with local modification by rehydration due to glass exposition to seawater, and by meteoric and fumarolic waters; (ii) a plumbing system(s) variable with time and currently dominated by closed-system degassing leading to explosive

Journal ArticleDOI
TL;DR: In this paper, petrographic and mineral chemical data for groundmass apatite overlap those from dyke, sill, and root-zone kimberlites from the Kimberley cluster (South Africa).
Abstract: Kimberlites are pipe-like igneous bodies, consisting of a pyroclastic crater and diatreme, commonly underlain by coherent root-zone rocks, and with associated dyke/sill complexes. The processes that control the different modes of coherent kimberlite emplacement remain uncertain. In addition, late evolution of kimberlite melts during emplacement into the upper crust remains poorly constrained. Therefore, it is unclear whether there is a link between melt composition/evolution and the emplacement mechanism of coherent kimberlites (i.e. planar dykes/sills vs. irregular bodies in the root zone). An absence of comparative studies on late-stage magmatic phases across the different emplacement modes of coherent kimberlite from the same locality hamper resolution of these issues. Therefore, we report petrographic and mineral chemical data for groundmass apatite in samples of dyke, sill, and root-zone kimberlites from the Kimberley cluster (South Africa). Early crystallised phases (olivine, spinel, Mg-ilmenite) in dyke/sill and root-zone kimberlites have indistinguishable compositions, and hence crystallised from similar primitive melts. Conversely, apatite compositions are generally distinct in dyke/sill (low Sr, high and variable Si) and root-zone kimberlites (high and variable Sr, low Si). The Si enrichment of apatite in dykes/sills is attributed to the coupled incorporation of CO32− and SiO44− for PO43−, reflecting higher CO2 contents in their parental melts, and potentially higher Si contents due to the preferential crystallisation of carbonates over mica/monticellite. The low Sr contents of apatite in dyke/sill kimberlites reflect equilibrium with a (kimberlite) melt (i.e. DSr is close to unity for carbonate and silicate melts), whereas the higher Sr contents of apatite in root-zone kimberlites require crystallisation from, or overprinting by a H2O ± CO2 fluid (significantly higher DSr). The relative enrichment of CO2 in kimberlite dykes/sills is evident from the abundance of carbonates, the presence of mesostasis dolomite and calcite phenocrysts in some samples, and concomitant reduced proportions of other groundmass phases (e.g. serpentine, mica, monticellite). During late alteration of kimberlite dykes/sills, monticellite is typically replaced by carbonates, whereas olivine and pleonaste are relatively stable, indicating the melts which form dykes/sills evolve to higher CO2/H2O ratios. It is unlikely that these two distinct evolutionary paths were caused by crustal contamination before or during near surface magma emplacement, because crustal assimilation is not recorded in the O and Sr isotopic composition of late crystallising olivine rinds or carbonates, respectively. We suggest that higher concentrations of CO2 are retained in kimberlite dykes/sills due to higher confining pressures (i.e. lack of breakthrough to the surface). In contrast, exsolution of CO2 from root-zone kimberlites increased melt H2O/CO2 ratios and promoted the crystallisation of mica and monticellite at the expense of dolomite and calcite. Apatite compositions have the potential to aid in the discrimination of kimberlites from lamproites (higher LREE, Sr, F, and S, lower Si contents) and carbonatites (higher LREE, F, Cl and S, lower Fe contents). However, the compositions of kimberlitic apatite overlap those from aillikites, probably due to similar late-stage melt compositions.

Journal ArticleDOI
01 Jan 2020-Lithos
TL;DR: In this article, the authors used whole-rock and olivine phenocryst compositions of Mesozoic basalts from the Jitai Basin of South China, which is part of the eastern Asian volcanic belt.

Journal ArticleDOI
08 May 2020-Minerals
TL;DR: The mineral composition and melt inclusions of ultramafic lamprophyres of the Terina complex were investigated in this paper, and they were originally composed of olivine macrocrysts and phenocrysts in carbonate groundmass, containing phlogopite, clinopyroxene and feldspars.
Abstract: The mineral composition and melt inclusions of ultramafic lamprophyres of the Terina complex were investigated. The rocks identified were aillikites, mela-aillikites, and damtjernites, and they were originally composed of olivine macrocrysts and phenocrysts, as well as phlogopite phenocrysts in carbonate groundmass, containing phlogopite, clinopyroxene and feldspars. Minor and accessory minerals were fluorapatite, ilmenite, rutile, titanite, and sulphides. Secondary minerals identified were quartz, calcite, dolomite, serpentine, chlorite, rutile, barite, synchysite-(Ce), and monazite-(Ce). Phlogopite, calcite, clinopyroxene, Ca-amphibole, fluorapatite, magnetite, and ilmenite occurred as daughter-phases in melt inclusions. The melt inclusions also contained Fe–Ni sulphides, synchysite-(Ce) and, probably, anhydrite. The olivine macrocrysts included orthopyroxene and ilmenite, and the olivine phenocrysts included Cr-spinel and Ti-magnetite inclusions. Crystal-fluid inclusions in fluorapatite from damtjernites contain calcite, clinopyroxene, dolomite, and barite. The data that were obtained confirm that the ultramafic lamprophyres of the Terina complex crystallized from peridotite mantle-derived carbonated melts and they have not undergone significant fractional crystallization. The investigated rocks are considered to be representative of melts that are derived from carbonate-rich mantle beneath the Siberian craton.

Journal ArticleDOI
TL;DR: In this paper, the authors report bulk Sisotope data from sulfide inclusions in olivine and pyroxene phenocrysts from one of the previously analyzed and four additional Mangaia basalts to further test for the prevalence of anomalous S in the HIMU mantle source feeding Mangaia.
Abstract: Mangaia, an ocean island in the Cook‐Austral volcanic chain, is the type locality for the HIMU mantle reservoir and has also been shown to exhibit evidence for recycled sulfur with anomalous δ34S and Δ33S that has been attributed an Archean origin. Here we report bulk S‐isotope data from sulfide inclusions in olivine and pyroxene phenocrysts from one of the previously analyzed and four additional Mangaia basalts to further test for the prevalence of anomalous S in the HIMU mantle source feeding Mangaia. We document compositions that range from −5.13‰ to +0.21‰ (±0.3 2σ), +0.006‰ to +0.049‰ (±0.016 2σ), −0.81‰ to +0.69‰ (±0.3 2σ) for δ34S, Δ33S, and Δ36S, respectively. These data extend the range of measured compositions and suggest S‐isotope heterogeneity in the HIMU mantle source at Mangaia. We show that S‐isotope compositions of bulk sulfide in olivine is not in isotopic equilibrium with bulk sulfide in pyroxene from the same samples and that samples from a confined area (M4, M10, M12, and M13) in the northern central part of the island show a distinct covariation for δ34S and Δ33S. This isotopic variation (forming an array) suggests mixing of sulfur from two sources that were captured at different stages of crystallization by phenocrysts in the Mangaia HIMU sulfur endmember.

Journal ArticleDOI
TL;DR: In this article, a detailed textural and compositional analysis combined with a range of equilibrium tests and rhyolite-MELTS modeling are used to distinguish autocrysts vs inherited crystal populations in the 2012 Havre eruption.
Abstract: The 2012 Havre eruption evacuated a crystal-poor rhyolite (∼3–7% crystals) producing a volumetrically dominant (∼1.4 km3) pumice raft, as well as seafloor giant pumice (5–8%) and lavas (12–14%) at the vent (∼0.1 km3), both of which have subtly higher phenocryst contents. For crystal-poor rhyolites like the Havre pumice, it can often remain ambiguous as to whether the few phenocrysts present, in this case, plagioclase, orthopyroxene, clinopyroxene, Fe-Ti oxides ± quartz, are: (a) autocrysts crystallizing from the surrounding melt, (b) antecrysts being sourced from mush and the magma plumbing system, or (c) xenocrysts derived from source materials or chamber walls, or (d) possibly a combination of all of the above. In crystal-poor magmas, the few crystals present are strongly relied upon to constrain pre-eruptive conditions such as magmatic temperatures, pressures, water content and fO2. A detailed textural and compositional analysis combined with a range of equilibrium tests and rhyolite-MELTS modeling provide the basis for distinguishing autocrystic vs inherited crystal populations in the Havre eruption. An autocrystic mineral assemblage of andesine plagioclase, enstatite and Fe-Ti oxides constrains the pre-eruptive conditions of the Havre rhyolite magma: magmatic temperatures of 890 ± 27°C, crystallization pressures at 2–4 kbars, oxygen fugacity of NNO + 0.4 and water concentrations (5.6 ± 1.1 wt.%). Inherited phases not in equilibrium with the host melt composition are clinopyroxene, An-rich plagioclase (> An53) and quartz. Rhyolite-MELTs modeling indicates the clinopyroxene and quartz have most likely been sourced from cooler, silicic mush zones in the Havre magmatic system. This study demonstrates that even in crystal-poor rhyolites it cannot be assumed that all crystals are autocrystic and can be used to constrain pre-eruptive magmatic conditions.

Journal ArticleDOI
TL;DR: In this paper, apatite geochemistry from four porphyry systems with distinctive metal endowments was investigated to further constrain magmatic fertility indicators and granitoid petrogenesis.

Journal ArticleDOI
TL;DR: Caleta el Cobre (CeC) 022 is a Martian meteorite of the nakhlite group, showing an unbrecciated cumulate texture, composed mainly of clinopyroxene and olivine as discussed by the authors.
Abstract: Caleta el Cobre (CeC) 022 is a Martian meteorite of the nakhlite group, showing an unbrecciated cumulate texture, composed mainly of clinopyroxene and olivine Augite shows irregular core zoning, euhedral rims, and thin overgrowths enriched in Fe relative to the core Low‐Ca pyroxene is found adjacent to olivine Phenocrysts of Fe‐Ti oxides are titanomagnetite with exsolutions of ilmenite/ulvospinel Intercumulus material consists of both coarse plagioclase and fine‐grained mesostasis, comprising K‐feldspars, pyroxene, apatite, ilmenite, Fe‐Ti oxides, and silica CeC 022 shows a high proportion of Martian aqueous alteration products (iddingsite) in olivine (451 vol% of olivine) and mesostasis This meteorite is the youngest nakhlite with a distinct Sm/Nd crystallization age of 1215 ± 0067 Ga Its ejection age of 118 ± 18 Ma is similar to other nakhlites CeC 022 reveals contrasted cooling rates with similarities with faster cooled nakhlites, such as Northwest Africa (NWA) 817, NWA 5790, or Miller Range 03346 nakhlites: augite irregular cores, Fe‐rich overgrowths, fine‐grained K‐feldspars, quenched oxides, and high rare earth element content CeC 022 also shares similarities with slower cooled nakhlites, including Nakhla and NWA 10153: pyroxene modal abundance, pyroxenes crystal size distribution, average pyroxene size, phenocryst mineral compositions, unzoned olivine, and abundant coarse plagioclase Moreover, CeC 022 is the most magnetic nakhlite and represents an analog source lithology for the strong magnetization of the Martian crust With its particular features, CeC 022 must originate from a previously unsampled sill or flow in the same volcanic system as the other nakhlites, increasing Martian sample diversity and our knowledge of nakhlites

Journal ArticleDOI
TL;DR: In this article, the authors reported that the condensation aerosol dominated the mass during the later stages of the eruption when the explosive activity had ceased, and was characterized by the greatest variety of particle compositions.
Abstract: Intense emission of volcanic aerosol accompanied the 2012–2013 basaltic effusive eruption of Tolbachik volcano, Kamchatka. The aerosols sampled contain sulfuric acid droplets, glassy particles, and 70 mineral phases. All aerosol particles may be classified by their origin. The fragmentation aerosol includes magma fragments: silicate glass clasts, silicate microspheres, and small phenocrysts (olivine, pyroxene, and magnetite). The alteration aerosol comprises particles of quenched silicate melt covered with secondary minerals (fluorides, sulfates, and oxides/hydroxides of rock-forming elements) and fragments of altered rocks composed solely of secondary minerals. The condensation aerosol dominated the mass during the later stages of the eruption when the explosive activity had ceased, and was characterized by the greatest variety of particle compositions. Na-K sulfate and Fe (III) oxide comprised more than 95% of the solid fraction of the condensation aerosol. The remaining 5% was represented by native elements (Au, Ag-Pt alloy, and Pt); sulfides of Fe, Cu, Ag, and Re; oxides and hydroxides of Al, Fe, Cu, Zn, Mo, W, Ta, and Zr; halides of Al, Mg, Na, K, Ca, Cd, Pb, Ag, and Tl; and sulfates of Na, K, Pb, Ca, and Ba; the only silicate was As-bearing orthoclase. Droplets of H2SO4 formed the liquid phase of the condensation aerosol. Some of the aerosol components, such as magnetite spherules or phosphate-carbonate-fluorite association, likely had a nonvolcanic origin (country rocks and wood fly ash). The volcanic aerosols and their contained minerals, discharged at Tolbachik and elsewhere, result in a physical and chemical effect on the environment in the region of such volcanoes.

Journal ArticleDOI
TL;DR: In this article, the authors established a cogenetic origin for green and colorless clinopyroxene as high-pressure precipitates from liquids of different fractionation degrees (up to 80%, for the highly evolved melts equilibrated with the green clinopeene), originated from a highly solidified front of silica-understood alkaline basaltic magmas at mantle reservoirs.
Abstract: Alkaline volcanic rocks from explosive monogenetic centers often carry an unusual cargo of crystals and rock fragments, which may provide valuable constraints on magma source, ascent and eruption. One of such examples is the Cenozoic Calatrava Volcanic Field in central Spain, a still poorly explored area to address these issues. Clinopyroxene, amphibole and phlogopite appear either as megacryst/phenocrysts or forming fine-grained cumulates (pyroxenite enclaves s.l.) in some eruptive centers of this volcanic field. They have previously been interpreted as cogenetic high-P minerals formed within the upper lithospheric mantle. The presence of Fe-Na-rich green and Mg-Cr-rich colorless clinopyroxene types as phenocryst cores or as oscillatory zoned crystals in pyroxenite enclaves points to a complex evolution of mineral fractionates from petrogenetically related magmas. In trace element chemistry all studied clinopyroxene types show parallel rare earth element patterns irrespective of whether they are megacrysts, colorless or green core phenocrysts, or zoned crystals within pyroxenite cumulates. This similarity indicates a genetic relationship between all the fractionated minerals. This is in agreement with the overlapping of initial 143Nd/144Nd and 87Sr/86Sr ratios of pyroxenite enclaves (0.512793–0.512885 and 0.703268–0.703778) that is within the chemical field of the host magmas and the Calatrava volcanics. The initial 143Nd/144Nd and 87Sr/86Sr ratios of megacrystic clinopyroxene, amphibole and phlogopite show a more restricted range (0.512832–0.512890 and 0.703217–0.703466), also falling within the isotopic composition of the Calatrava volcanic rocks. Deep magmatic systems beneath monogenetic volcanic fields involve several stages of melt accumulation, fractionation and contamination at variable depths. Trace element and isotope mineral chemistry are powerful tools to understand the history of ascent and stagnation of alkaline basaltic magmas and discriminate between magma mixing, wall-rock contamination and closed magmatic system evolution. In our study, we establish a cogenetic origin for green and colorless clinopyroxene as high-pressure precipitates from liquids of different fractionation degrees (up to 80%, for the highly evolved melts equilibrated with the green clinopyroxene), originated from a highly solidified front of silica-undersaturated alkaline magmas at mantle reservoirs.

Journal ArticleDOI
TL;DR: In this paper, a trace element study of olivine occurring in xenoliths and as phenocrysts in an aillikite dike located on the southern Superior Craton is presented, supporting an origin for dunites that is more closely linked to primary melt generation at the base of relatively thick continental lithosphere.
Abstract: Interactions between carbonated ultramafic silicate magmas and the continental lithospheric mantle results in the formation of dunite—a ubiquitous xenolith type in kimberlites and aillikites. However, whether this process dominantly occurs in the mantle source region or by subsequent interactions between lithospheric mantle fragments and transporting silica-undersaturated magmas during ascent remains debated. Aillikite magmas, which are derived from the fusion of carbonate-phlogopite metasomes under diamond-stability field upper mantle conditions, have a mineralogically more complex source than kimberlites, providing an opportunity to more fully constrain the origin of dunite xenoliths in such deeply sourced carbonated silicate magmas. Here we present a major and trace element study of olivine occurring in xenoliths and as phenocrysts in an aillikite dike located on the southern Superior Craton. We show that olivine within the dunite microxenoliths exhibits extreme enrichment in Al, Cr, Na, and V when compared to equivalent xenoliths carried by kimberlites. We interpret these results as evidence for the presence of carbonate-phlogopite metasomes left residual in the cratonic mantle source during aillikite magma formation. Our results are inconsistent with models of dunite formation through orthopyroxene dissolution upon kimberlite/aillikite magma ascent, supporting an origin for such dunites that is more closely linked to primary melt generation at the base of relatively thick continental lithosphere. Our work demonstrates that it is possible to constrain the precursor composition of cratonic mantle dunite at depth, thereby facilitating the further exploration of how carbonated silicate magmas modify and weaken continental lithospheric roots.