scispace - formally typeset
Search or ask a question
Topic

Phenocryst

About: Phenocryst is a research topic. Over the lifetime, 4132 publications have been published within this topic receiving 158441 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the partitioning of 25 trace elements between high-silica rhyolitic glass and unzoned phenocrysts of potassic and sodic sanidine, biotite, augite, ferrohedenbergite, hypersthene, fayalite, titanomagnetite, ilmenite, zircon, and allanite has been determined by INAA on suites of samples from the mildly peralkaline lavas and tuff of the Sierra La Primavera, Mexico, and the metaluminous, compo

717 citations

Journal ArticleDOI
TL;DR: In this article, the coexisting microphenocrysts of magnetite and ilmenite together with the ferromagnesian silicates in salic volcanic rocks have been analyzed with the electron microprobe.
Abstract: The co-existing microphenocrysts of magnetite and ilmenite together with the ferromagnesian silicates in salic volcanic rocks have been analysed with the electron microprobe. The temperatures and oxygen fugacities of the oxide equilibration have been estimated from the curves of Buddington and Lindsley (1965). The co-existing ferromagnesian silicate phenocrysts are either iron-rich olivine, or orthopyroxene or biotite and amphibole; for each of these groups of phenocrysts, the oxide equilibration data are specific and fall on three distinct curves, parallel to experimental oxygen buffer curves. Many of the investigated rhyolites were quenched at temperatures near 900°C, which may represent liquidus temperatures for those with sparse phenocrysts, and also the intrusion temperature of water-undersaturated granites. The composition of the biotite phenocrysts, which are Al-poor and Ti-rich, taken in conjunction with the oxide data, suggest that two Lassen dacites precipitated biotite at a water fugacity of approximately 400 bars. The composition of the later crystallizing ferromagnesian silicates, particularly the pyroxenes which show a wide range in Fe/Mg ratio, is strongly influenced by the prior crystallization of the oxide phases. If the biotite phenocrysts are typical of acid liquids, then they are incapable of generating by fractionation a peraluminous residual liquid; rather they would tend to make a liquid peralkaline.

717 citations

Journal ArticleDOI
TL;DR: In this article, a set of discrimination diagrams have been derived from a statistical study of the Ti, Cr, Ca, Al and Na contents of over 706 analyses of calcic clinopyroxene phenocrysts from recent volcanic rocks of various magmatic types from various tectonic settings.

690 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the oxygen fugacity of spinel-lherzolites is about five log units below the Ni−NiO buffer to one above it.
Abstract: At present the best estimates of the oxygen fugacity of spinel-lherzolites that could be the source material of basic magmas is about five log units below the Ni−NiO buffer to one above it. However partially glassy basic lavas, ranging from MORBs to minettes, all with olivine on their liquidus, cover a wider range, and may have oxygen fugacities that extend to four log units above NNO. Surprisingly the range of oxygen fugacities observed in silicic lavas and ashflows with quartz phenocrysts is smaller, despite a crustal dominated evolution. The peralkaline silicic lava type pantellerite is the most reduced, equivalent to MORBs, whereas the large volume ashflows with phenocrysts of hornblende and/or sphene are the most oxidised. As the concentration of water in the basic lavas is correlated with increase in their redox state, it would seem that water could be the agent of this increase. That this is unlikely is seen in the behavior of silicic ashflows and lavas, particularly those of Yellowstone. Here the silicic magmas of the last 2Ma contain about 2 wt% FeO(total), and typically phenocrysts of fayalite, quartz and Fe−Ti oxides. Despite extensive exchange of the 18O of the magma with meteoric water after caldera collapse (Hildreth et al. 1984), there is no displacement of the redox equilibria. Thus the thermal dissociation of molecular H2O to H2, and its subsequent diffusive loss to cause oxidation must have been minimal. This could only be so if the activity of water was small, as it would be if H2O reacted with the silicate liquid to form OH groups (Stolper 1982). The conclusion is that silicic magmas with small amounts of iron and large amounts of water do not have their redox states reset, which in turn presumably reflect their generation. By analogy basic magmas with large amounts of iron and far less water are even less likely to have their redox equilibria disturbed, so that their oxygen fugacities will also reflect their source regions. The effect of pressure on the ferric-ferrous equilibrium in basic magmas can be calculated from experimental measurements of the partial molar volumes of FeO and Fe2O3, and their pressure derivatives ϖV/ϖP, in silicate liquids. The effect of pressure is found to be about the same on the liquid as it is for various solid oxygen buffers. Accordingly there should be mantle source regions covering the same range of oxygen fugacity as that found in basic lavas, but so far samples of spinel-lherzolite of equivalent oxygen fugacity to minettes or other potassic lavas have not been found. Whether or not the redox state of phlogopite-pyroxenites is equivalent to these potassic lavas cannot be established without experiment.

596 citations

Journal ArticleDOI
TL;DR: Basalts cored on legs 2 and 3 of the Deep-Sea Drilling Project (DSDP) range in sea floor spreading age from 18 to 67×106 yr as discussed by the authors.
Abstract: Basalts cored on legs 2 and 3 of the Deep-Sea Drilling Project (DSDP) range in sea floor spreading age from 18 to 67×106 yr. Although many of the basalts are highly altered, fresh glass is usually present. Except for site 2–10 the fresh glasses are petrographically and geochemically similar to mid-Atlantic ridge (MAR) axial basalts. There are no systematic compositional differences as a function of distance from the MAR axis. Two sites contain basalts with olivine (Fo90) phenocrysts, high Mg/Mg + ΣFe, high Ni and Cr abundances, and very low large ion lithophile (LIL) element abundances. These basalts are the best candidates for primary magma recovered from the sea floor; fractional crystallization of such basalt may yield the more evolved basalts typical of the MAR. More fractionated basalts with clinopyroxene phenocrysts occur at twp other sites, but they retain low LIL element abundances. Site 2-10 contains titaniferous augite and is relatively enriched in LIL elements. It is unlikely that this basalt was derived by fractional crystallization from LIL element depleted tholeiites; instead, the site 2-10 basalt requires a different mantle source. These results imply that the upper Atlantic Ocean basement is dominantly LIL element depleted tholeiite.

549 citations


Network Information
Related Topics (5)
Basalt
18.6K papers, 805.1K citations
93% related
Zircon
23.7K papers, 786.6K citations
92% related
Metamorphism
18.3K papers, 655.8K citations
92% related
Continental crust
11.1K papers, 677.5K citations
91% related
Mantle (geology)
26.1K papers, 1.3M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202399
2022142
2021105
2020100
2019103
2018109