scispace - formally typeset
Search or ask a question
Topic

Phenology

About: Phenology is a research topic. Over the lifetime, 7051 publications have been published within this topic receiving 239519 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971-2000) and concluded that previously published results of phenological changes were not biased by reporting or publication predisposition.
Abstract: Global climate change impacts can already be tracked in many physical and biological systems; in particular, terrestrial ecosystems provide a consistent picture of observed changes. One of the preferred indicators is phenology, the science of natural recurring events, as their recorded dates provide a high-temporal resolution of ongoing changes. Thus, numerous analyses have demonstrated an earlier onset of spring events for mid and higher latitudes and a lengthening of the growing season. However, published single-site or single-species studies are particularly open to suspicion of being biased towards predominantly reporting climate change-induced impacts. No comprehensive study or meta-analysis has so far examined the possible lack of evidence for changes or shifts at sites where no temperature change is observed. We used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971–2000). Our results showed that 78% of all leafing, flowering and fruiting records advanced (30% significantly) and only 3% were significantly delayed, whereas the signal of leaf colouring/fall is ambiguous. We conclude that previously published results of phenological changes were not biased by reporting or publication predisposition: the average advance of spring/summer was 2.5 days decade � 1 in Europe. Our analysis of 254 mean national time series undoubtedly demonstrates that species’ phenology is responsive to temperature of the preceding

2,457 citations

Journal ArticleDOI
TL;DR: In this article, a new methodology to monitor global vegetation phenology from time series of satellite data is presented, which uses series of piecewise logistic functions, which are fit to remotely sensed vegetation index (VI) data, to represent intra-annual vegetation dynamics.

2,143 citations

Journal ArticleDOI
19 Aug 2004-Nature
TL;DR: It is shown that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.
Abstract: Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.

1,991 citations

Journal ArticleDOI
TL;DR: Recent advances in several fields that have enabled scaling between species responses to recent climatic changes and shifts in ecosystem productivity are discussed, with implications for global carbon cycling.
Abstract: Plants are finely tuned to the seasonality of their environment, and shifts in the timing of plant activity (i.e. phenology) provide some of the most compelling evidence that species and ecosystems are being influenced by global environmental change. Researchers across disciplines have observed shifting phenology at multiple scales, including earlier spring flowering in individual plants and an earlier spring green-up' of the land surface revealed in satellite images. Experimental and modeling approaches have sought to identify the mechanisms causing these shifts, as well as to make predictions regarding the consequences. Here, we discuss recent advances in several fields that have enabled scaling between species responses to recent climatic changes and shifts in ecosystem productivity, with implications for global carbon cycling.

1,863 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the environmental drivers of phenology, and the impacts of climate change on phenology in different biomes, and assess the potential impact on these feedbacks of shifts in phenology driven by climate change.

1,522 citations


Network Information
Related Topics (5)
Vegetation
49.2K papers, 1.4M citations
91% related
Species diversity
32.2K papers, 1.2M citations
86% related
Ecosystem
25.4K papers, 1.2M citations
86% related
Biodiversity
44.8K papers, 1.9M citations
86% related
Species richness
61.6K papers, 2.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,097
20222,285
2021482
2020471
2019418
2018426