scispace - formally typeset
Search or ask a question
Topic

Phenotypic screening

About: Phenotypic screening is a research topic. Over the lifetime, 739 publications have been published within this topic receiving 19785 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is postulate that a target-centric approach for first-in-class drugs, without consideration of an optimal MMOA, may contribute to the current high attrition rates and low productivity in pharmaceutical research and development.
Abstract: Preclinical strategies that are used to identify potential drug candidates include target-based screening, phenotypic screening, modification of natural substances and biologic-based approaches. To investigate whether some strategies have been more successful than others in the discovery of new drugs, we analysed the discovery strategies and the molecular mechanism of action (MMOA) for new molecular entities and new biologics that were approved by the US Food and Drug Administration between 1999 and 2008. Out of the 259 agents that were approved, 75 were first-in-class drugs with new MMOAs, and out of these, 50 (67%) were small molecules and 25 (33%) were biologics. The results also show that the contribution of phenotypic screening to the discovery of first-in-class small-molecule drugs exceeded that of target-based approaches — with 28 and 17 of these drugs coming from the two approaches, respectively — in an era in which the major focus was on target-based approaches. We postulate that a target-centric approach for first-in-class drugs, without consideration of an optimal MMOA, may contribute to the current high attrition rates and low productivity in pharmaceutical research and development.

1,552 citations

Journal ArticleDOI
01 Apr 2010-Nature
TL;DR: This study carried out a genome-wide phenotypic profiling of each of the ∼21,000 human protein-coding genes by two-day live imaging of fluorescently labelled chromosomes, which allowed us to identify hundreds of human genes involved in diverse biological functions including cell division, migration and survival.
Abstract: Despite our rapidly growing knowledge about the human genome, we do not know all of the genes required for some of the most basic functions of life. To start to fill this gap we developed a high-throughput phenotypic screening platform combining potent gene silencing by RNA interference, time-lapse microscopy and computational image processing. We carried out a genome-wide phenotypic profiling of each of the approximately 21,000 human protein-coding genes by two-day live imaging of fluorescently labelled chromosomes. Phenotypes were scored quantitatively by computational image processing, which allowed us to identify hundreds of human genes involved in diverse biological functions including cell division, migration and survival. As part of the Mitocheck consortium, this study provides an in-depth analysis of cell division phenotypes and makes the entire high-content data set available as a resource to the community.

812 citations

Journal ArticleDOI
TL;DR: A high throughput, phenotypic screen in cells that led to the discovery of a class of sirtuin inhibitors, and structure-activity relationship analysis of the compounds identified a key hydroxy-napthaldehyde moiety that is necessary and sufficient for inhibitory activity.

548 citations

Journal ArticleDOI
TL;DR: It is demonstrated that small molecules capable of conditional gene product modulation can be identified through developmental screens in zebrafish, and several of the small molecules identified allowed us to dissect the logic of melanocyte and otolith development and to identify critical periods for these events.
Abstract: Much has been learned about vertebrate development by random mutagenesis followed by phenotypic screening and by targeted gene disruption followed by phenotypic analysis in model organisms. Because the timing of many developmental events is critical, it would be useful to have temporal control over modulation of gene function, a luxury frequently not possible with genetic mutants. Here, we demonstrate that small molecules capable of conditional gene product modulation can be identified through developmental screens in zebrafish. We have identified several small molecules that specifically modulate various aspects of vertebrate ontogeny, including development of the central nervous system, the cardiovascular system, the neural crest, and the ear. Several of the small molecules identified allowed us to dissect the logic of melanocyte and otolith development and to identify critical periods for these events. Small molecules identified in this way offer potential to dissect further these and other developmental processes and to identify novel genes involved in vertebrate development.

501 citations

Journal ArticleDOI
TL;DR: It is postulate that the contribution of phenotypic screening to cancer drug discovery has been hampered by a reliance on 'classical' nonspecific drug effects such as cytotoxicity and mitotic arrest, exacerbated by a paucity of mechanistically defined cellular models for therapeutically translatable cancer phenotypes.
Abstract: There has been a resurgence of interest in the use of phenotypic screens in drug discovery as an alternative to target-focused approaches. Given that oncology is currently the most active therapeutic area, and also one in which target-focused approaches have been particularly prominent in the past two decades, we investigated the contribution of phenotypic assays to oncology drug discovery by analysing the origins of all new small-molecule cancer drugs approved by the US Food and Drug Administration (FDA) over the past 15 years and those currently in clinical development. Although the majority of these drugs originated from target-based discovery, we identified a significant number whose discovery depended on phenotypic screening approaches. We postulate that the contribution of phenotypic screening to cancer drug discovery has been hampered by a reliance on 'classical' nonspecific drug effects such as cytotoxicity and mitotic arrest, exacerbated by a paucity of mechanistically defined cellular models for therapeutically translatable cancer phenotypes. However, technical and biological advances that enable such mechanistically informed phenotypic models have the potential to empower phenotypic drug discovery in oncology.

386 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
83% related
Protein kinase A
68.4K papers, 3.9M citations
82% related
Regulation of gene expression
85.4K papers, 5.8M citations
82% related
Transcription factor
82.8K papers, 5.4M citations
82% related
RNA
111.6K papers, 5.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202343
202268
202174
202068
201979
201875