scispace - formally typeset
Search or ask a question
Topic

Phenylacetic acid

About: Phenylacetic acid is a research topic. Over the lifetime, 1289 publications have been published within this topic receiving 19597 citations. The topic is also known as: ω-phenylacetic acid & α-toluic acid.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that at least a part of the biological activities ascribed to berry polyphenols and other PPT are due to their colonic catabolites.
Abstract: The absorption of dietary phenols, polyphenols and tannins (PPT) is an essential step for biological activity and effects on health. Although a proportion of these dietary bioactive compounds are absorbed intact, depending on their chemical structure and the nature of any attached moiety (e.g. sugar, organic acid), substantial amounts of lower molecular weight catabolites are absorbed after biotransformation by the colon microflora. The main products in the colon are (a) benzoic acids (C6-C1), especially benzoic acid and protocatechuic acid; (b) phenylacetic acids (C6-C2), especially phenylacetic acid per se; (c) phenylpropionic acids (C6-C3), where the latter are almost entirely in the dihydro form, notably dihydrocaffeic acid, dihydroferulic acid, phenylpropionic acid and 3-(3'-hydroxyphenyl)-propionic acid. As a result of this biotransformation, some of these compounds can each reach mm concentrations in faecal water. Many of these catabolites are efficiently absorbed in the colon, appear in the blood and are ultimately excreted in the urine. In the case of certain polyphenols, such as anthocyanins, these catabolites are major products in vivo; protocatechuic acid is reported to represent a substantial amount of the ingested dose of cyanidin-3-O-glucoside. The major catabolites of berries, and especially blackcurrants, are predicted based on compositional data for polyphenols from berries and other sources. Since microbial catabolites may be present at many sites of the body in higher concentration than the parent compound, it is proposed that at least a part of the biological activities ascribed to berry polyphenols and other PPT are due to their colonic catabolites.

403 citations

Journal ArticleDOI
TL;DR: The enzyme was shown to be inhibited by excess substrate, benzylpenicillin, and by both of the products of hydrolysis, which was found to be competitive and by 6-aminopenicillanic acid to be non-competitive.

282 citations

Journal ArticleDOI
TL;DR: It was shown by mass spectrometry that the media without charcoal contained high amounts of phenylacetic acid and p-OH-benzoic acid (Daucus, Allium, and Haplopappus), whereas the media with activated charcoal did not.
Abstract: Cell suspensions of Daucus carota and Haplopappus gracilis and callus suspensions of Allum cepa var. proliferum were grown in media with and without activated charcoal. Differentiation occurred in those Daucus and Allium cultures that contained charcoal. It was shown by mass spectrometry that the media without charcoal contained high amounts of phenylacetic acid and p-OH-benzoic acid (Daucus), 2,6-OH-benzoic acid (Allium) and benzoic acid, pelargonic acid and caprylic acid (Haplopappus), whereas the media with activated charcoal did not. It was also shown that p-OH-benzoic acid had inhibitory effects on the embryogenesis in Daucus cultures.

259 citations

Journal ArticleDOI
TL;DR: The metabolites identified suggest a stepwise reduction of the aromatic ring system before ring cleavage in naphthalene degradation by a sulfate-reducing enrichment culture, which was studied by substrate utilization tests and identification of metabolites by gas chromatography-mass spectrometry.
Abstract: Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture was studied by substrate utilization tests and identification of metabolites by gas chromatography-mass spectrometry. In substrate utilization tests, the culture was able to oxidize naphthalene, 2-methylnaphthalene, 1- and 2-naphthoic acids, phenylacetic acid, benzoic acid, cyclohexanecarboxylic acid, and cyclohex-1-ene-carboxylic acid with sulfate as the electron acceptor. Neither hydroxylated 1- or 2-naphthoic acid derivatives and 1- or 2-naphthol nor the monoaromatic compounds ortho-phthalic acid, 2-carboxy-1-phenylacetic acid, and salicylic acid were utilized by the culture within 100 days. 2-Naphthoic acid accumulated in all naphthalene-grown cultures. Reduced 2-naphthoic acid derivatives could be identified by comparison of mass spectra and coelution with commercial reference compounds such as 1,2,3,4-tetrahydro-2-naphthoic acid and chemically synthesized decahydro-2-naphthoic acid. 5,6,7,8-Tetrahydro-2-naphthoic acid and octahydro-2-naphthoic acid were tentatively identified by their mass spectra. The metabolites identified suggest a stepwise reduction of the aromatic ring system before ring cleavage. In degradation experiments with [1-13C]naphthalene or deuterated D8-naphthalene, all metabolites mentioned derived from the introduced labeled naphthalene. When a [13C]bicarbonate-buffered growth medium was used in conjunction with unlabeled naphthalene, 13C incorporation into the carboxylic group of 2-naphthoic acid was shown, indicating that activation of naphthalene by carboxylation was the initial degradation step. No ring fission products were identified.

245 citations

Journal ArticleDOI
TL;DR: This pathway constitutes the common part (core) of a complex functional unit (catabolon) integrated by several routes that catalyze the transformation of structurally related molecules into a common intermediate (phenylacetyl-CoA).
Abstract: Fourteen different genes included in a DNA fragment of 18 kb are involved in the aerobic degradation of phenylacetic acid by Pseudomonas putida U. This catabolic pathway appears to be organized in three contiguous operons that contain the following functional units: (i) a transport system, (ii) a phenylacetic acid activating enzyme, (iii) a ring-hydroxylation complex, (iv) a ring-opening protein, (v) a β-oxidation-like system, and (vi) two regulatory genes. This pathway constitutes the common part (core) of a complex functional unit (catabolon) integrated by several routes that catalyze the transformation of structurally related molecules into a common intermediate (phenylacetyl-CoA).

241 citations


Network Information
Related Topics (5)
Enzyme
32.8K papers, 1.1M citations
78% related
Amino acid
124.9K papers, 4M citations
77% related
Enzyme assay
25.4K papers, 690.7K citations
77% related
Hydrolysis
33.5K papers, 755.9K citations
77% related
Carboxylic acid
48.5K papers, 605.6K citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235
202248
202114
202016
201921
201818