scispace - formally typeset
Topic

Phonon scattering

About: Phonon scattering is a(n) research topic. Over the lifetime, 8759 publication(s) have been published within this topic receiving 222141 citation(s).

...read more

Papers
More filters

Journal ArticleDOI
B.L. Henke1, Eric M. Gullikson1, J.C. Davis1Institutions (1)
Abstract: The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, have been described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical, "atomic-like" description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

...read more

5,108 citations


Book
31 Dec 1995-
Abstract: 1. An Introduction to Electron Energy-Loss Spectroscopy.- 1.1 Interaction of Fast Electrons with a Solid.- 1.2. The Electron Energy-Loss Spectrum.- 1.3. The Development of Experimental Techniques.- 1.4. Comparison of Analytical Methods.- 1.4.1. Ion-Beam Methods.- 1.4.2. Incident Photons.- 1.4.3. Electron-Beam Techniques.- 1.5. Further Reading.- 2. Instrumentation for Energy-Loss Spectroscopy.- 2.1. Energy-Analyzing and Energy-Selecting Systems.- 2.1.1. The Magnetic-Prism Spectrometer.- 2.1.2. Energy-Selecting Magnetic-Prism Devices.- 2.1.3. The Wien Filter.- 2.1.4. Cylindrical-Lens Analyzers.- 2.1.5. Retarding-Field Analyzers.- 2.1.6. Electron Monochromators.- 2.2. The Magnetic-Prism Spectrometer.- 2.2.1. First-Order Properties.- 2.2.2. Higher-Order Focusing.- 2.2.3. Design of an Aberration-Corrected Spectrometer.- 2.2.4. Practical Considerations.- 2.2.5. Alignment and Adjustment of the Spectrometer.- 2.3. The Use of Prespectrometer Lenses.- 2.3.1. Basic Principles.- 2.3.2. CTEM with Projector Lens On.- 2.3.3. CTEM with Projector Lens Off.- 2.3.4. Spectrometer-Specimen Coupling in a High-Resolution STEM.- 2.4. Recording the Energy-Loss Spectrum.- 2.4.1. Serial Acquisition.- 2.4.2. Electron Detectors for Serial Recording.- 2.4.3. Scanning the Energy-Loss Spectrum.- 2.4.4. Signal Processing and Storage.- 2.4.5. Noise Performance of a Serial Detector.- 2.4.6. Parallel-Recording Detectors.- 2.4.7. Direct Exposure of a Diode-Array Detector.- 2.4.8. Indirect Exposure of a Diode Array.- 2.4.9. Removal of Diode-Array Artifacts.- 2.5. Energy-Filtered Imaging.- 2.5.1. Elemental Mapping.- 2.5.2. Z-Contrast Imaging.- 3. Electron Scattering Theory.- 3.1. Elastic Scattering.- 3.1.1. General Formulas.- 3.1.2. Atomic Models.- 3.1.3. Diffraction Effects.- 3.1.4. Electron Channeling.- 3.1.5. Phonon Scattering.- 3.2. Inelastic Scattering.- 3.2.1. Atomic Models.- 3.2.2. Bethe Theory.- 3.2.3. Dielectric Formulation.- 3.2.4. Solid-State Effects.- 3.3. Excitation of Outer-Shell Electrons.- 3.3.1. Volume Plasmons.- 3.3.2. Single-Electron Excitation.- 3.3.3. Excitons.- 3.3.4. Radiation Losses.- 3.3.5. Surface Plasmons.- 3.3.6. Single, Plural, and Multiple Scattering.- 3.4. Inner-Shell Excitation.- 3.4.1. Generalized Oscillator Strength.- 3.4.2. Kinematics of Scattering.- 3.4.3. Ionization Cross Sections.- 3.5. The Spectral Background to Inner-Shell Edges.- 3.6. The Structure of Inner-Shell Edges.- 3.6.1. Basic Edge Shapes.- 3.6.2. Chemical Shifts in Threshold Energy.- 3.6.3. Near-Edge Fine Structure (ELNES).- 3.6.4. Extended Energy-Loss Fine Structure (EXELFS).- 4. Quantitative Analysis of the Energy-Loss Spectrum.- 4.1. Removal of Plural Scattering from the Low-Loss Region.- 4.1.1. Fourier-Log Deconvolution.- 4.1.2. Approximate Methods.- 4.1.3. Angular-Dependent Deconvolution.- 4.2. Kramers-Kronig Analysis.- 4.3. Removal of Plural Scattering from Inner-Shell Edges.- 4.3.1. Fourier-Log Deconvolution.- 4.3.2. Fourier-Ratio Method.- 4.3.3. Van Cittert'1. An Introduction to Electron Energy-Loss Spectroscopy.- 1.1 Interaction of Fast Electrons with a Solid.- 1.2. The Electron Energy-Loss Spectrum.- 1.3. The Development of Experimental Techniques.- 1.4. Comparison of Analytical Methods.- 1.4.1. Ion-Beam Methods.- 1.4.2. Incident Photons.- 1.4.3. Electron-Beam Techniques.- 1.5. Further Reading.- 2. Instrumentation for Energy-Loss Spectroscopy.- 2.1. Energy-Analyzing and Energy-Selecting Systems.- 2.1.1. The Magnetic-Prism Spectrometer.- 2.1.2. Energy-Selecting Magnetic-Prism Devices.- 2.1.3. The Wien Filter.- 2.1.4. Cylindrical-Lens Analyzers.- 2.1.5. Retarding-Field Analyzers.- 2.1.6. Electron Monochromators.- 2.2. The Magnetic-Prism Spectrometer.- 2.2.1. First-Order Properties.- 2.2.2. Higher-Order Focusing.- 2.2.3. Design of an Aberration-Corrected Spectrometer.- 2.2.4. Practical Considerations.- 2.2.5. Alignment and Adjustment of the Spectrometer.- 2.3. The Use of Prespectrometer Lenses.- 2.3.1. Basic Principles.- 2.3.2. CTEM with Projector Lens On.- 2.3.3. CTEM with Projector Lens Off.- 2.3.4. Spectrometer-Specimen Coupling in a High-Resolution STEM.- 2.4. Recording the Energy-Loss Spectrum.- 2.4.1. Serial Acquisition.- 2.4.2. Electron Detectors for Serial Recording.- 2.4.3. Scanning the Energy-Loss Spectrum.- 2.4.4. Signal Processing and Storage.- 2.4.5. Noise Performance of a Serial Detector.- 2.4.6. Parallel-Recording Detectors.- 2.4.7. Direct Exposure of a Diode-Array Detector.- 2.4.8. Indirect Exposure of a Diode Array.- 2.4.9. Removal of Diode-Array Artifacts.- 2.5. Energy-Filtered Imaging.- 2.5.1. Elemental Mapping.- 2.5.2. Z-Contrast Imaging.- 3. Electron Scattering Theory.- 3.1. Elastic Scattering.- 3.1.1. General Formulas.- 3.1.2. Atomic Models.- 3.1.3. Diffraction Effects.- 3.1.4. Electron Channeling.- 3.1.5. Phonon Scattering.- 3.2. Inelastic Scattering.- 3.2.1. Atomic Models.- 3.2.2. Bethe Theory.- 3.2.3. Dielectric Formulation.- 3.2.4. Solid-State Effects.- 3.3. Excitation of Outer-Shell Electrons.- 3.3.1. Volume Plasmons.- 3.3.2. Single-Electron Excitation.- 3.3.3. Excitons.- 3.3.4. Radiation Losses.- 3.3.5. Surface Plasmons.- 3.3.6. Single, Plural, and Multiple Scattering.- 3.4. Inner-Shell Excitation.- 3.4.1. Generalized Oscillator Strength.- 3.4.2. Kinematics of Scattering.- 3.4.3. Ionization Cross Sections.- 3.5. The Spectral Background to Inner-Shell Edges.- 3.6. The Structure of Inner-Shell Edges.- 3.6.1. Basic Edge Shapes.- 3.6.2. Chemical Shifts in Threshold Energy.- 3.6.3. Near-Edge Fine Structure (ELNES).- 3.6.4. Extended Energy-Loss Fine Structure (EXELFS).- 4. Quantitative Analysis of the Energy-Loss Spectrum.- 4.1. Removal of Plural Scattering from the Low-Loss Region.- 4.1.1. Fourier-Log Deconvolution.- 4.1.2. Approximate Methods.- 4.1.3. Angular-Dependent Deconvolution.- 4.2. Kramers-Kronig Analysis.- 4.3. Removal of Plural Scattering from Inner-Shell Edges.- 4.3.1. Fourier-Log Deconvolution.- 4.3.2. Fourier-Ratio Method.- 4.3.3. Van Cittert's Method.- 4.3.4. Effect of a Collection Aperture.- 4.4. Background Fitting to Ionization Edges.- 4.4.1. Energy Dependence of the Background.- 4.4.2. Background-Fitting Procedures.- 4.4.3. Background-Subtraction Errors.- 4.5. Elemental Analysis Using Inner-Shell Edges.- 4.5.1. Basic Formulas.- 4.5.2. Correction for Incident-Beam Convergence.- 4.5.3. Effect of Sample Orientation.- 4.5.4. Effect of Specimen Thickness.- 4.5.5. Choice of Collection Angle.- 4.5.6. Choice of Integration and Fitting Regions.- 4.5.7. Microanalysis Software.- 4.5.8. Calculation of Partial Cross Sections.- 4.6. Analysis of Extended Energy-Loss Fine Structure.- 4.6.1. Spectrum Acquisition.- 4.6.2. Fourier-Transform Method of Data Analysis.- 4.6.3. Curve-Fitting Procedure.- 5. Applications of Energy-Loss Spectroscopy.- 5.1. Measurement of Specimen Thickness.- 5.1.1. Measurement of Absolute Thickness.- 5.1.2. Sum-Rule Methods.- 5.2. Low-Loss Spectroscopy.- 5.2.1. Phase Identification.- 5.2.2. Measurement of Alloy Composition.- 5.2.3. Detection of Hydrogen and Helium.- 5.2.4. Zero-Loss Images.- 5.2.5. Z-contrast Images.- 5.2.6. Plasmon-Loss Images.- 5.3. Core-Loss Microanalysis.- 5.3.1. Choice of Specimen Thickness and Incident Energy.- 5.3.2. Specimen Preparation.- 5.3.3. Elemental Detection and Mapping.- 5.3.4. Quantitative Microanalysis.- 5.3.5. Measurement and Control of Radiation Damage.- 5.4. Spatial Resolution and Elemental Detection Limits.- 5.4.1. Electron-Optical Considerations.- 5.4.2. Loss of Resolution due to Electron Scattering.- 5.4.3. Statistical Limitations.- 5.4.4. Localization of Inelastic Scattering.- 5.5. Structural Information from EELS.- 5.5.1. Low-Loss Fine Structure.- 5.5.2. Orientation Dependence of Core-Loss Edges.- 5.5.3. Core-Loss Diffraction Patterns.- 5.5.4. Near-Edge Fine Structure.- 5.5.5. Extended Fine Structure.- 5.5.6. Electron-Compton Measurements.- Appendix A. Relativistic Bethe Theory.- Appendix B. FORTRAN Programs.- B.3. Incident-Convergence Correction.- B.4. Fourier-Log Deconvolution.- B.5. Kramers-Kronig Transformation.- Appendix C. Plasmon Energies of Some Elements and Compounds.- Appendix D. Inner-Shell Binding Energies and Edge Shapes.- Appendix E. Electron Wavelengths and Relativistic Factors Fundamental Constants.- References.

...read more

3,578 citations


Journal ArticleDOI
Philip Kim1, Li Shi1, Arun Majumdar1, Paul L. McEuen1  +1 moreInstitutions (2)
TL;DR: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device and shows linear temperature dependence with a value of 80 microV/K at room temperature.

...read more

Abstract: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device. The observed thermal conductivity is more than 3000 W/K m at room temperature, which is 2 orders of magnitude higher than the estimation from previous experiments that used macroscopic mat samples. The temperature dependence of the thermal conductivity of nanotubes exhibits a peak at 320 K due to the onset of umklapp phonon scattering. The measured thermoelectric power shows linear temperature dependence with a value of 80 microV/K at room temperature.

...read more

2,960 citations


Journal ArticleDOI
Jian-Hao Chen1, Chaun Jang1, Shudong Xiao1, Masa Ishigami2  +2 moreInstitutions (2)
TL;DR: It is shown that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature resistivity, and its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate.

...read more

Abstract: The linear dispersion relation in graphene gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder or phonons, is independent of carrier density, n. Here we show that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature resistivity. At a technologically relevant carrier density of 1 x1012 cm-2, we infer a mean free path for electron-acoustic phonon scattering of >2 microm and an intrinsic mobility limit of 2 x 105 cm2 V-1 s-1. If realized, this mobility would exceed that of InSb, the inorganic semiconductor with the highest known mobility ( approximately 7.7 x 104 cm2 V-1 s-1; ref. 9) and that of semiconducting carbon nanotubes ( approximately 1 x 105 cm2 V-1 s-1; ref. 10). A strongly temperature-dependent resistivity contribution is observed above approximately 200 K (ref. 8); its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate and limit the room-temperature mobility to approximately 4 x 104 cm2 V-1 s-1, indicating the importance of substrate choice for graphene devices.

...read more

2,732 citations


Journal ArticleDOI
Abstract: We provide a broad review of fundamental electronic properties of two-dimensional graphene with the emphasis on density and temperature dependent carrier transport in doped or gated graphene structures. A salient feature of our review is a critical comparison between carrier transport in graphene and in two-dimensional semiconductor systems (e.g. heterostructures, quantum wells, inversion layers) so that the unique features of graphene electronic properties arising from its gap- less, massless, chiral Dirac spectrum are highlighted. Experiment and theory as well as quantum and semi-classical transport are discussed in a synergistic manner in order to provide a unified and comprehensive perspective. Although the emphasis of the review is on those aspects of graphene transport where reasonable consensus exists in the literature, open questions are discussed as well. Various physical mechanisms controlling transport are described in depth including long- range charged impurity scattering, screening, short-range defect scattering, phonon scattering, many-body effects, Klein tunneling, minimum conductivity at the Dirac point, electron-hole puddle formation, p-n junctions, localization, percolation, quantum-classical crossover, midgap states, quantum Hall effects, and other phenomena.

...read more

2,659 citations


Network Information
Related Topics (5)
Phonon

41K papers, 842.9K citations

94% related
Electronic band structure

25.9K papers, 669.5K citations

93% related
Effective mass (solid-state physics)

12.5K papers, 295.4K citations

93% related
Superlattice

18.6K papers, 392.4K citations

92% related
Fermi level

27.1K papers, 652.4K citations

92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202210
2021295
2020255
2019297
2018257
2017234

Top Attributes

Show by:

Topic's top 5 most impactful authors

Michael A. Stroscio

33 papers, 955 citations

Junichiro Shiomi

16 papers, 846 citations

Andrzej Jeżowski

15 papers, 257 citations

Natalio Mingo

15 papers, 725 citations

Patrick E. Hopkins

15 papers, 673 citations