scispace - formally typeset
Search or ask a question
Topic

Phosphate solubilizing bacteria

About: Phosphate solubilizing bacteria is a research topic. Over the lifetime, 1892 publications have been published within this topic receiving 37838 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Genetic manipulation of phosphate-solubilizing bacteria to improve their ability to improve plant growth may include cloning genes involved in both mineral and organic phosphate solubilization, followed by their expression in selected rhizobacterial strains.

2,761 citations

Journal ArticleDOI
TL;DR: The results indicated that the criterion for isolation of phosphate solubilizers based on the formation of visible halo/zone on agar plates is not a reliable technique, and soil microbes should be screened in NBRIP broth assay for the identification of the most efficient phosphate soluble inorganic phosphates in liquid medium.
Abstract: A novel defined microbiological growth medium, National Botanical Research Institute's phosphate growth medium (NBRIP), which is more efficient than Pikovskaya medium (PVK), was developed for screening phosphate solubilizing microorganisms. In plate assay the efficiency of NBRIP was comparable to PVK; however, in broth assay NBRIP consistently demonstrated about 3-fold higher efficiency compared to PVK. The results indicated that the criterion for isolation of phosphate solubilizers based on the formation of visible halo/zone on agar plates is not a reliable technique, as many isolates which did not show any clear zone on agar plates solubilized insoluble inorganic phosphates in liquid medium. It may be concluded that soil microbes should be screened in NBRIP broth assay for the identification of the most efficient phosphate solubilizers.

1,834 citations

Journal ArticleDOI
TL;DR: This review focuses on the diversity of PSM, mechanism of P solubilization, role of various phosphatases, impact of various factors on P solubsility, present and future scenario of their use and potential for application of this knowledge in managing a sustainable environmental system.
Abstract: Phosphorus is the second important key element after nitrogen as a mineral nutrient in terms of quantitative plant requirement. Although abundant in soils, in both organic and inorganic forms, its availability is restricted as it occurs mostly in insoluble forms. The P content in average soil is about 0.05% (w/w) but only 0.1% of the total P is available to plant because of poor solubility and its fixation in soil (Illmer and Schinner, Soil Biol Biochem 27:257-263, 1995). An adequate supply of phosphorus during early phases of plant development is important for laying down the primordia of plant reproductive parts. It plays significant role in increasing root ramification and strength thereby imparting vitality and disease resistance capacity to plant. It also helps in seed formation and in early maturation of crops like cereals and legumes. Poor availability or deficiency of phosphorus (P) markedly reduces plant size and growth. Phosphorus accounts about 0.2 - 0.8% of the plant dry weight. To satisfy crop nutritional requirements, P is usually added to soil as chemical P fertilizer, however synthesis of chemical P fertilizer is highly energy intensive processes, and has long term impacts on the environment in terms of eutrophication, soil fertilility depletion, carbon footprint. Moreover, plants can use only a small amount of this P since 75–90% of added P is precipitated by metal–cation complexes, and rapidly becomes fixed in soils. Such environmental concerns have led to the search for sustainable way of P nutrition of crops. In this regards phosphate-solubilizing microorganisms (PSM) have been seen as best eco-friendly means for P nutrition of crop. Although, several bacterial (pseudomonads and bacilli) and fungal strains (Aspergilli and Penicillium) have been identified as PSM their performance under in situ conditions is not reliable and therefore needs to be improved by using either genetically modified strains or co-inoculation techniques. This review focuses on the diversity of PSM, mechanism of P solubilization, role of various phosphatases, impact of various factors on P solubilization, the present and future scenario of their use and potential for application of this knowledge in managing a sustainable environmental system.

1,386 citations

Journal ArticleDOI
TL;DR: Four strains namely, Arthrobacter ureafaciens, Phyllobacterium myrsinacearum, Rhodococcus erythropolis and Delftia sp.

1,242 citations

Journal ArticleDOI
TL;DR: The results showed that many of the endophytic strains produced GA and have moderate to high phosphate solubilization capacities, and when inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, theendophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects.
Abstract: The use of plant growth promoting bacterial inoculants as live microbial biofertilisers provides a promising alternative to chemical fertilisers and pesticides. Inorganic phosphate solubilisation is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilise the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilisation. The study presented here describes the ability of endophytic bacterial isolates to produce gluconic acid, solubilise insoluble phosphate and stimulate the growth of Pea plants (Pisum sativum). This study also describes the genetic systems within three of these endophyte isolates thought to be responsible for their effective phosphate solubilising abilities. The results showed that many of the endophytic isolates produced gluconic acid (14-169 mM) and have moderate to high phosphate solubilisation capacities (~ 400-1300 mg L-1). When inoculated to Pea plants grown in sand/soil under soluble phosphate limiting conditions, the endophyte isolates that produced medium to high levels of gluconic acid also displayed enhanced plant growth promotion effects.

558 citations


Network Information
Related Topics (5)
Soil fertility
33.7K papers, 859.4K citations
80% related
Fertilizer
60.1K papers, 609.2K citations
78% related
Nutrient
17.6K papers, 564K citations
78% related
Soil classification
22.9K papers, 587.6K citations
78% related
Shoot
32.1K papers, 693.3K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202385
2022191
2021117
2020106
2019118
2018130