scispace - formally typeset
Search or ask a question
Topic

Phosphatidylinositol 3-phosphate

About: Phosphatidylinositol 3-phosphate is a research topic. Over the lifetime, 208 publications have been published within this topic receiving 21325 citations. The topic is also known as: PI(3)P & PI3P.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that double FYVE domain–containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins, which may be involved in Autophagosome biogenesis.
Abstract: Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain–containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.

1,664 citations

Journal ArticleDOI
30 Jul 1998-Nature
TL;DR: The identification of EEA1 as a direct Rab5 effector provides a molecular link between PI(3)K and Rab5, and its restricted distribution to early endosomes indicates that EEA 1 may confer directionality to Rab5-dependent endocytic transport.
Abstract: GTPases and lipid kinases regulate membrane traffic along the endocytic pathway by mechanisms that are not completely understood. Fusion between early endosomes requires phosphatidylinositol-3-OH kinase (PI(3)K) activity as well as the small GTPase Rab5. Excess Rab5-GTP complex restores endosome fusion when PI(3)K is inhibited. Here we identify the early-endosomal autoantigen EEA1 which binds the PI(3)K product phosphatidylinositol-3-phosphate, as a new Rab5 effector that is required for endosome fusion. The association of EEA1 with the endosomal membrane requires Rab5-GTP and PI(3)K activity, and excess Rab5-GTP stabilizes the membrane association of EEA1 even when PI(3)K is inhibited. The identification of EEA1 as a direct Rab5 effector provides a molecular link between PI(3)K and Rab5, and its restricted distribution to early endosomes indicates that EEA1 may confer directionality to Rab5-dependent endocytic transport.

1,105 citations

Journal ArticleDOI
TL;DR: PI(3)P follows a conserved intralumenal degradation pathway, and its generation, accessibility and turnover are likely to play a crucial role in defining the early endosomes and the subsequent steps leading to multivesicular endosome formation.
Abstract: Phosphatidylinositol 3-kinase (PI3K) regulates several vital cellular processes, including signal transduction and membrane trafficking. In order to study the intracellular localization of the PI3K product, phosphatidylinositol 3-phosphate [PI(3)P], we constructed a probe consisting of two PI(3)P-binding FYVE domains. The probe was found to bind specifically, and with high affinity, to PI(3)P both in vitro and in vivo. When expressed in fibroblasts, a tagged probe localized to endosomes, as detected by fluorescence microscopy. Electron microscopy of untransfected fibroblasts showed that PI(3)P is highly enriched on early endosomes and in the internal vesicles of multivesicular endosomes. While yeast cells deficient in PI3K activity (vps15 and vps34 mutants) were not labelled, PI(3)P was found on intralumenal vesicles of endosomes and vacuoles of wild-type yeast. vps27Delta yeast cells, which have impaired endosome to vacuole trafficking, showed a decreased vacuolar labelling and increased endosome labelling. Thus PI(3)P follows a conserved intralumenal degradation pathway, and its generation, accessibility and turnover are likely to play a crucial role in defining the early endosome and the subsequent steps leading to multivesicular endosome formation.

1,047 citations

Journal ArticleDOI
TL;DR: Coimmunoprecipitation experiments showed that two distinct Vps34 PtdIns 3–kinase complexes exist: one, containing Vps15p, Vps30p, and Apg14p, functions in autophagy and the other containing VPS15 p, VPS30 p, and Vps38p functions in CPY sorting.
Abstract: Vps30p/Apg6p is required for both autophagy and sorting of carboxypeptidase Y (CPY). Although Vps30p is known to interact with Apg14p, its precise role remains unclear. We found that two proteins copurify with Vps30p. They were identified by mass spectrometry to be Vps38p and Vps34p, a phosphatidylinositol (PtdIns) 3–kinase. Vps34p, Vps38p, Apg14p, and Vps15p, an activator of Vps34p, were coimmunoprecipitated with Vps30p. These results indicate that Vps30p functions as a subunit of a Vps34 PtdIns 3–kinase complex(es). Phenotypic analyses indicated that Apg14p and Vps38p are each required for autophagy and CPY sorting, respectively, whereas Vps30p, Vps34p, and Vps15p are required for both processes. Coimmunoprecipitation using anti-Apg14p and anti-Vps38p antibodies and pull-down experiments showed that two distinct Vps34 PtdIns 3–kinase complexes exist: one, containing Vps15p, Vps30p, and Apg14p, functions in autophagy and the other containing Vps15p, Vps30p, and Vps38p functions in CPY sorting. The vps34 and vps15 mutants displayed additional phenotypes such as defects in transport of proteinase A and proteinase B, implying the existence of another PtdIns 3–kinase complex(es). We propose that multiple Vps34p–Vps15p complexes associated with specific regulatory proteins might fulfill their membrane trafficking events at different sites.

997 citations

Journal ArticleDOI
Malcolm Whitman1, C P Downes1, M Keeler1, T Keller1, Lewis C. Cantley1 
14 Apr 1988-Nature
TL;DR: It is proposed that type I Ptdlns kinase is responsible for the generation of PtdIns(3)P in intact cells, and that this novel phosphoinositide could be important in the transduction of mitogenic and oncogenic signals.
Abstract: The generation of second messengers from the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdInsP2) by phosphoinositidase C has been implicated in the mediation of cellular responses to a variety of growth factors and oncogene products. The first step in the production of PtdInsP2 from phosphatidylinositol (PtdIns) is catalysed by PtdIns kinase. A PtdIns kinase activity has been found to associate specifically with several oncogene products, as well as with the platelet-derived growth factor (PDGF) receptor. We have previously identified two biochemically distinct PtdIns kinases in fibroblasts, and have found that only one of these, designated type I, specifically associates with activated tyrosine kinases. We have now characterized the site on the inositol ring phosphorylated by type I PtdIns kinase, and find that this kinase specifically phosphorylates the D-3 ring position to generate a novel phospholipid, phosphatidylinositol-3-phosphate (PtdIns(3)P). In contrast, the main PtdIns kinase in fibroblasts, designated type II, specifically phosphorylates the D-4 position to produce phosphatidylinositol-4-phosphate (PtdIns(4)P), previously considered to be the only form of PtdInsP. We have also tentatively identified PtdIns(3)P as a minor component of total PtdInsP in intact fibroblasts. We propose that type I PtdIns kinase is responsible for the generation of PtdIns(3)P in intact cells, and that this novel phosphoinositide could be important in the transduction of mitogenic and oncogenic signals.

986 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
77% related
Protein structure
42.3K papers, 3M citations
76% related
Regulation of gene expression
85.4K papers, 5.8M citations
76% related
Phosphorylation
69.3K papers, 3.8M citations
76% related
Protein kinase A
68.4K papers, 3.9M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202111
202014
20193
20182
20179
201610