scispace - formally typeset
Search or ask a question
Topic

Phosphorene

About: Phosphorene is a research topic. Over the lifetime, 2588 publications have been published within this topic receiving 138260 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Abstract: Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.

12,477 citations

Journal ArticleDOI
TL;DR: In this article, a few-layer black phosphorus crystals with thickness down to a few nanometres are used to construct field effect transistors for nanoelectronic devices. But the performance of these materials is limited.
Abstract: Two-dimensional crystals have emerged as a class of materials that may impact future electronic technologies. Experimentally identifying and characterizing new functional two-dimensional materials is challenging, but also potentially rewarding. Here, we fabricate field-effect transistors based on few-layer black phosphorus crystals with thickness down to a few nanometres. Reliable transistor performance is achieved at room temperature in samples thinner than 7.5 nm, with drain current modulation on the order of 10(5) and well-developed current saturation in the I-V characteristics. The charge-carrier mobility is found to be thickness-dependent, with the highest values up to ∼ 1,000 cm(2) V(-1) s(-1) obtained for a thickness of ∼ 10 nm. Our results demonstrate the potential of black phosphorus thin crystals as a new two-dimensional material for applications in nanoelectronic devices.

6,924 citations

Journal ArticleDOI
21 Mar 2014-ACS Nano
TL;DR: In this paper, the 2D counterpart of layered black phosphorus, which is called phosphorene, is introduced as an unexplored p-type semiconducting material and the authors find that the band gap is direct, depends on the number of layers and the in-layer strain, and significantly larger than the bulk value of 0.31-0.36 eV.
Abstract: We introduce the 2D counterpart of layered black phosphorus, which we call phosphorene, as an unexplored p-type semiconducting material. Same as graphene and MoS2, single-layer phosphorene is flexible and can be mechanically exfoliated. We find phosphorene to be stable and, unlike graphene, to have an inherent, direct, and appreciable band gap. Our ab initio calculations indicate that the band gap is direct, depends on the number of layers and the in-layer strain, and is significantly larger than the bulk value of 0.31–0.36 eV. The observed photoluminescence peak of single-layer phosphorene in the visible optical range confirms that the band gap is larger than that of the bulk system. Our transport studies indicate a hole mobility that reflects the structural anisotropy of phosphorene and complements n-type MoS2. At room temperature, our few-layer phosphorene field-effect transistors with 1.0 μm channel length display a high on-current of 194 mA/mm, a high hole field-effect mobility of 286 cm2/V·s, and an...

5,233 citations

Journal ArticleDOI
Han Liu, Adam T. Neal, Zhen Zhu, David Tománek, Peide D. Ye1 
TL;DR: In this article, a few-layer phosphorene has been introduced as a 2D p-type material for electronic applications, which has an inherent, direct and appreciable band gap that depends on the number of layers.
Abstract: Preceding the current interest in layered materials for electronic applications, research in the 1960's found that black phosphorus combines high carrier mobility with a fundamental band gap. We introduce its counterpart, dubbed few-layer phosphorene, as a new 2D p-type material. Same as graphene and MoS2, phosphorene is flexible and can be mechanically exfoliated. We find phosphorene to be stable and, unlike graphene, to have an inherent, direct and appreciable band-gap that depends on the number of layers. Our transport studies indicate a carrier mobility that reflects its structural anisotropy and is superior to MoS2. At room temperature, our phosphorene field-effect transistors with 1.0 um channel length display a high on-current of 194 mA/mm, a high hole field-effect mobility of 286 cm2/Vs, and an on/off ratio up to 1E4. We demonstrate the possibility of phosphorene integration by constructing the first 2D CMOS inverter of phosphorene PMOS and MoS2 NMOS transistors.

3,846 citations

Journal ArticleDOI
Jingsi Qiao1, Xianghua Kong1, Zhixin Hu1, Feng Yang1, Wei Ji1 
TL;DR: A detailed theoretical investigation of the atomic and electronic structure of few-layer black phosphorus (BP) is presented to predict its electrical and optical properties, finding that the mobilities are hole-dominated, rather high and highly anisotropic.
Abstract: Two-dimensional crystals are emerging materials for nanoelectronics. Development of the field requires candidate systems with both a high carrier mobility and, in contrast to graphene, a sufficiently large electronic bandgap. Here we present a detailed theoretical investigation of the atomic and electronic structure of few-layer black phosphorus (BP) to predict its electrical and optical properties. This system has a direct bandgap, tunable from 1.51 eV for a monolayer to 0.59 eV for a five-layer sample. We predict that the mobilities are hole-dominated, rather high and highly anisotropic. The monolayer is exceptional in having an extremely high hole mobility (of order 10,000 cm(2) V(-1) s(-1)) and anomalous elastic properties which reverse the anisotropy. Light absorption spectra indicate linear dichroism between perpendicular in-plane directions, which allows optical determination of the crystalline orientation and optical activation of the anisotropic transport properties. These results make few-layer BP a promising candidate for future electronics.

3,622 citations


Network Information
Related Topics (5)
Graphene
144.5K papers, 4.9M citations
92% related
Band gap
86.8K papers, 2.2M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Thin film
275.5K papers, 4.5M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023157
2022376
2021310
2020392
2019411
2018397