scispace - formally typeset
Search or ask a question

Showing papers on "Phosphorus published in 2009"


Journal ArticleDOI
TL;DR: In this article, the authors put forward the case for including long-term phosphorus scarcity on the priority agenda for global food security, and presented opportunities for recovering phosphorus and reducing demand together with institutional challenges.
Abstract: Food production requires application of fertilizers containing phosphorus, nitrogen and potassium on agricultural fields in order to sustain crop yields. However modern agriculture is dependent on phosphorus derived from phosphate rock, which is a non-renewable resource and current global reserves may be depleted in 50–100 years. While phosphorus demand is projected to increase, the expected global peak in phosphorus production is predicted to occur around 2030. The exact timing of peak phosphorus production might be disputed, however it is widely acknowledged within the fertilizer industry that the quality of remaining phosphate rock is decreasing and production costs are increasing. Yet future access to phosphorus receives little or no international attention. This paper puts forward the case for including long-term phosphorus scarcity on the priority agenda for global food security. Opportunities for recovering phosphorus and reducing demand are also addressed together with institutional challenges.

4,220 citations


Journal ArticleDOI
20 Feb 2009-Science
TL;DR: Improvements in the water quality of many freshwater and most coastal marine ecosystems requires reductions in both nitrogen and phosphorus inputs.
Abstract: Improvements in the water quality of many freshwater and most coastal marine ecosystems requires reductions in both nitrogen and phosphorus inputs.

2,773 citations


Journal ArticleDOI
05 Mar 2009-Nature
TL;DR: It is shown that phytoplankton, in regions of oligotrophic ocean where phosphate is scarce, reduce their cellular phosphorus requirements by substituting non-phosphorus membrane lipids for phospholipids, suggesting that phospholIPid substitutions are fundamental biochemical mechanisms that allow phy toplankon to maintain growth in the face of phosphorus limitation.
Abstract: Phosphorus is an obligate requirement for the growth of all organisms; major biochemical reservoirs of phosphorus in marine plankton include nucleic acids and phospholipids. However, eukaryotic phytoplankton and cyanobacteria (that is, 'phytoplankton' collectively) have the ability to decrease their cellular phosphorus content when phosphorus in their environment is scarce. The biochemical mechanisms that allow phytoplankton to limit their phosphorus demand and still maintain growth are largely unknown. Here we show that phytoplankton, in regions of oligotrophic ocean where phosphate is scarce, reduce their cellular phosphorus requirements by substituting non-phosphorus membrane lipids for phospholipids. In the Sargasso Sea, where phosphate concentrations were less than 10 nmol l-1, we found that only 1.3 +/- 0.6% of phosphate uptake was used for phospholipid synthesis; in contrast, in the South Pacific subtropical gyre, where phosphate was greater than 100 nmol l-1, plankton used 17 6% (ref. 6). Examination of the planktonic membrane lipids at these two locations showed that classes of sulphur- and nitrogen-containing membrane lipids, which are devoid of phosphorus, were more abundant in the Sargasso Sea than in the South Pacific. Furthermore, these non-phosphorus, 'substitute lipids' were dominant in phosphorus-limited cultures of all of the phytoplankton species we examined. In contrast, the marine heterotrophic bacteria we examined contained no substitute lipids and only phospholipids. Thus heterotrophic bacteria, which compete with phytoplankton for nutrients in oligotrophic regions like the Sargasso Sea, appear to have a biochemical phosphorus requirement that phytoplankton avoid by using substitute lipids. Our results suggest that phospholipid substitutions are fundamental biochemical mechanisms that allow phytoplankton to maintain growth in the face of phosphorus limitation.

616 citations


Journal ArticleDOI
TL;DR: Phosphoric acid and/or phosphate rock was effective in reducing Pb availability in terms of water solubility, bioaccessibility, and phytoavailability and was probably attributed to the formation of insoluble Pb phosphate minerals.

328 citations


Journal ArticleDOI
TL;DR: The results implied that organic acid production by Pseudomonas strains is independent of their genetic relatedness and each strain has its own ability of producing organic acids during the solubilization of inorganic phosphates.
Abstract: Phosphorus deficiency is a major constraint to crop production due to rapid binding of the applied phosphorus into fixed forms not available to the plants. Microbial solubilization of inorganic phosphates has been attributed mainly to the production of organic acids. Phosphate-solubilizing microorganisms enhance plant growth under conditions of poor phosphorus availability by solubilizing insoluble phosphates in the soil. This paper describes the production of organic acids during inorganic phosphate solubilization and influence on plant growth as a function of phosphate solubilization by fluorescent Pseudomonas. Nineteen phosphate-solubilizing fluorescent Pseudomonas strains of P. fluorescens, P. poae, P. trivialis, and Pseudomonas spp. produced gluconic acid, oxalic acid, 2-ketogluconic acid, lactic acid, succinic acid, formic acid, citric acid and malic acid in the culture filtrates during the solubilization of tricalcium phosphate, Mussoorie rock phosphate, Udaipur rock phosphate and North Carolina rock phosphate. The strains differed quantitatively and qualitatively in the production of organic acids during solubilization of phosphate substrates. Cluster analysis based on organic acid profiling revealed inter-species and intra-species variation in organic acids produced by Pseudomonas strains. The phosphate-solubilizing bacterial treatments P. trivialis BIHB 745, P. trivialis BIHB 747, Pseudomonas sp. BIHB 756 and P. poae BIHB 808 resulted in significantly higher or statistically at par growth and total N, P and K content over single super phosphate treatment in maize. These treatments also significantly affected pH, organic matter, and N, P, and K content of the soil. The results implied that organic acid production by Pseudomonas strains is independent of their genetic relatedness and each strain has its own ability of producing organic acids during the solubilization of inorganic phosphates. Significant difference in plant growth promotion by efficient phosphate-solubilizing Pseudomonas strains point at the need for selecting potential strains in plant growth promotion experiments in conjunction with various phosphate substrates for their targeted application as bioinoculants.

315 citations


Journal ArticleDOI
TL;DR: It is indicated that in vitro, high phosphorus directly increases parathyroid hormone secretion.
Abstract: Phosphorus retention is an important factor in the development of hyperparathyroidism secondary to renal failure. In vivo manipulation of phosphorus is associated with changes in serum calcium and calcitriol levels which in turn can modify parathyroid hormone synthesis and secretion. The present in vitro study evaluates whether high extracellular phosphorus has a direct effect on parathyroid hormone secretion. Fresh rat parathyroid glands were incubated in a media with phosphorus concentrations of 1, 2, 3, and 4 mM and subsequently exposed to calcium levels ranging from 0.4 to 1.35 mM. In 1.25 mM calcium, the parathyroid hormone secretion rate was similar in 1 and 2 mM phosphorus; however, a phosphorus concentration of 3 and 4 mM produced a 3- and 4-fold increase in the parathyroid hormone secretion, respectively, as compared with 1 mM phosphorus. While in 1 or 2 mM phosphorus an increase in calcium from 0.6 to 1.35 mM reduced parathyroid hormone secretion to 37%, in 4 mM phosphorus the same increase in calcium only inhibited parathyroid hormone secretion to 75%. Furthermore, the addition of arachidonic acid 20 μM, a substrate for inhibitory intracellular signal pathway, to the 4 mM phosphorus-1.35 mM calcium incubation media reduced the parathyroid hormone secretion to 34.5% (p < 0.05). In conclusion, our results indicate that in vitro, high phosphorus directly increases parathyroid hormone secretion. (J Bone Miner Res 1996;11:970-976)

314 citations


Journal ArticleDOI
TL;DR: The costs for recovered phosphate exceed the costs for phosphate from rock phosphate by several times, and for German conditions, the specific additional costs of wastewater treatment by integrating phosphorus recovery can be estimated at euro2-6 per capita and year.

270 citations


Journal ArticleDOI
TL;DR: The possibility that the recycling of phosphorous from human and animal waste, which plays a central role in concentrations of cyanobacterial blooms when disposed in water, can help to mitigate this shortage is considered.
Abstract: This article discusses the potential impact that the depletion of known phosphorus mining reserves on agriculture in the U.S. and around the world. The possibility that the recycling of phosphorous from human and animal waste, which plays a central role in concentrations of cyanobacterial blooms when disposed in water, can help to mitigate this shortage is considered. The technological and logistical challenges of recovering phosphorus from human and animal waste are assessed.

247 citations


Journal ArticleDOI
TL;DR: In this article, the authors report the riverine fluxes and concentrations of major nutrients (nitrogen, phosphorus, and silicon) in the rivers of the contiguous landmass of China and Korea in the northeast Asia.
Abstract: . Chinese rivers deliver about 5–10% of global freshwater input and 15–20% of the global continental sediment to the world ocean. We report the riverine fluxes and concentrations of major nutrients (nitrogen, phosphorus, and silicon) in the rivers of the contiguous landmass of China and Korea in the northeast Asia. The rivers are generally enriched with dissolved inorganic nitrogen (DIN) and depleted in dissolved inorganic phosphate (PO43−) with very high DIN: PO43− concentration ratios. DIN, phosphorus, and silicon levels and loads in rivers are mainly affected by agriculture activities and urbanization, anthropogenic activities and adsorption on particulates, and rock types, climate and physical denudation intensity, respectively. Nutrient transports by rivers in the summer are 3–4 times higher than those in the winter with the exception of NH4+. The flux of NH4+ is rather constant throughout the year due to the anthropogenic sources such as the sewer discharge. As nutrient composition has changed in the rivers, ecosystems in estuaries and coastal sea have also changed in recent decades. Among the changes, a shift of limiting nutrients from phosphorus to nitrogen for phytoplankton production with urbanization is noticeable and in some areas silicon becomes the limiting nutrient for diatom productivity. A simple steady-state mass-balance box model was employed to assess nutrient budgets in the estuaries. The major Chinese estuaries export

225 citations


Journal ArticleDOI
TL;DR: How organisms sense changes in phosphate concentrations and how changes in hormonal factors result in the conservation or excretion of phosphorus are discussed.
Abstract: Phosphorus plays a critical role in diverse biological processes, and, therefore, the regulation of phosphorus balance and homeostasis are critical to the well being of the organism. Changes in environmental, dietary, and serum concentrations of inorganic phosphorus are detected by sensors that elicit changes in cellular function and alter the efficiency by which phosphorus is conserved. Short-term, post-cibal responses that occur independently of hormones previously thought to be important in phosphorus homeostasis may play a larger role than previously appreciated in the regulation of phosphorus homeostasis. Several hormones and regulatory factors such as the vitamin D endocrine system, parathyroid hormone, and the phosphatonins (FGF-23, sFRP-4, MEPE) among others, may play a role only in the long-term regulation of phosphorus homeostasis. In this review, we discuss how organisms sense changes in phosphate concentrations and how changes in hormonal factors result in the conservation or excretion of phosphorus.

224 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled with the Rossby Centre Ocean model (RCO) to simulate the time period from 1902 to 1998 using reconstructed physical forcing and climatological nutrient loads of the late 20th century.

Journal ArticleDOI
TL;DR: The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 degrees C, which promoted phosphorus sorption.

Journal ArticleDOI
TL;DR: XRD, E-SEM, and EDX data provide evidence for a sequential series of increasingly less soluble P mineral phases forming on the BOS surface, which suggests that BOS may be a suitable substrate in passive treatment systems, providing a long-term P removal mechanism.
Abstract: Few studies have characterized reactive media for phosphorus (P) removal in passive treatment systems in terms of both batch and continuous flow experiments. This study uses basic oxygen steel slag (BOS) from a U.K. feedstock. Batch experiments demonstrated the effective removal of phosphorus with varying initial pH, initial P concentration, clast size, and ionic strength to represent environmental conditions. Continuous flow column experiments, operated for 406 days, with an influent P concentration of 1-50 mg/L (typical of domestic and dairy parlour waste) achieved removal of up to 62%; a second set of column experiments running for 306 days with an influent P concentration of 100-300 mg/L achieved a maximum effective removal of 8.39 mg/g. This figure is higher than that for other slags reviewed in this study (e.g., EAF Slag 3.93 mg/g and NZ melter slag 1.23 mg/g). XRD, E-SEM, and EDX data provide evidence for a sequential series of increasingly less soluble P mineral phases forming on the BOS surface (octa-calcium phosphate, brushite, and hydroxylapatite),which suggests that BOS may be a suitable substrate in passive treatment systems, providing a long-term P removal mechanism.

Journal ArticleDOI
TL;DR: Uncooked meat and poultry products that are enhanced may contain additives that increase phosphorus and potassium content by as much as almost two- and three-fold, respectively; this modification may not be discernible from inspection of the food label.
Abstract: Background and objectives: Uncooked meat and poultry products are commonly enhanced by food processors using phosphate salts. The addition of potassium and phosphorus to these foods has been recognized but not quantified. Design, setting, participants, & measurements: We measured the phosphorus, potassium, and protein content of 36 uncooked meat and poultry products: Phosphorus using the Association of Analytical Communities (AOAC) official method 984.27, potassium using AOAC official method 985.01, and protein using AOAC official method 990.03. Results: Products that reported the use of additives had an average phosphate-protein ratio 28% higher than additive free products; the content ranged up to almost 100% higher. Potassium content in foods with additives varied widely; additive free products all contained Conclusions: Uncooked meat and poultry products that are enhanced may contain additives that increase phosphorus and potassium content by as much as almost two- and three-fold, respectively; this modification may not be discernible from inspection of the food label.

Journal ArticleDOI
TL;DR: It is demonstrated that an important crop species can be genetically engineered to successfully increase grain production on an acid soil and Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+).
Abstract: Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

Journal ArticleDOI
Xiuling Bai1, Shiming Ding1, Chengxin Fan1, Tao Liu1, Dan Shi1, Lu Zhang1 
TL;DR: The proportion of extracted organic P tototal P in sediments was negatively correlated with total P in the water column, as were the proportions for orthophosphate monoesters and DNA, which implies that the majority of organic P in surface sediments is likely stabilized in some way, and does not directly contribute to the internal loading of P from sediments.

Journal ArticleDOI
TL;DR: In this article, the role of C quantity and quality in Fe reduction and associated P mobilization in tropical forest soils was explored, and it was shown that the microbial biomass P had increased significantly suggesting rapid microbial uptake of P liberated from Fe.
Abstract: In the highly weathered soils of humid tropical forests, iron (Fe) plays a key role in ecosystem biogeochemical cycling through its interactions with carbon (C) and phosphorus (P). We used a laboratory study to explore the role of C quantity and quality in Fe reduction and associated P mobilization in tropical forest soils. Soils were incubated under an ambient atmosphere headspace (room air) with multiple levels of leaf litter leachate or acetate additions. Net Fe reduction occurred in all the treatments and at every time point. The more complex mixture of organic compounds in leaf litter leachate stimulated Fe reduction as much acetate, an easily fermentable C source. At the end of the experiment, Fe reduction was generally greater with higher C additions than in the low C additions and controls. The microbial biomass P had increased significantly suggesting rapid microbial uptake of P liberated from Fe. This occurred without increases in the available (NaHCO 3 ) P pool. The immobilization of P by microbes during the incubation provides a P conservation mechanism in these soils with fluctuating redox potential, and may ultimately stimulate more C cycling in these highly productive ecosystems. Iron cycling appears to be an important source of P for the biota and can contribute significantly to C oxidation in upland tropical forest soils.

Journal ArticleDOI
TL;DR: The results indicate that acidMine drainage sludges -- hitherto thought of as undesirable wastes -- can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

Journal ArticleDOI
TL;DR: Preipitation of calcium phosphate on to ammonium-loaded zeolite was achieved at low super saturations (< pH 7.5) through secondary nucleation and crystal growth, leading to an increase in particle size.

Journal ArticleDOI
TL;DR: In this paper, the traditional viewpoint of nitrogen control is pointed out to lack a scientific basis: the N/P hypothesis is just a subjective assumption; bottle bioassay experiments fail to simulate the natural process of nitrogen fixation.
Abstract: w Traditionally, nitrogen control is generally considered an important component of reducing lake eutrophication and cyanobacteria blooms. However, this viewpoint is refuted recently by researchers in China and North America. In the present paper, the traditional viewpoint of nitrogen control is pointed out to lack a scientific basis: the N/P hypothesis is just a subjective assumption; bottle bioassay experiments fail to simulate the natural process of nitrogen fixation. Our multi-year comparative research in more than 40 Yangtze lakes indicates that phosphorus is the key factor determining phytoplankton growth regardless of nitrogen concentrations and that total phytoplankton biomass is determined by total phosphorus and not by total nitrogen concentrations. These results imply that, in the field, nitrogen control will not decrease phytoplankton biomass. This finding is supported by a long-term whole-lake experiment from North America. These outcomes can be generalized in terms that a reduction in nitrogen loading may not decrease the biomass of total phytoplankton as it can stimulate blooms of nitrogen-fixing cyanobacteria. To mitigate eutrophication, it is not nitrogen but phosphorus that should be reduced, unless nitrogen concentrations are too high to induce direct toxic impacts on human beings or other organisms. Finally, details are provided on how to reduce controls on nitrogen and how to mitigate eutrophication. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Journal ArticleDOI
TL;DR: A real-time control strategy for A(2)N-SBR can be undertaken based on some characteristic points of pH, redox potential (ORP) and dissolved oxygen (DO) profiles in order to obtain the optimum hydraulic retention time (HRT) and improve the operating reliability.

Journal ArticleDOI
TL;DR: Better reporting of phosphorus content of foods by manufacturers could result in improved dietary phosphorus control without risk of protein malnutrition.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the material flow of phosphorus within Japan, including that in the iron and steel industry, on the basis of statistical data for 2002 and found that the quantity of phosphorus in iron-making slag is almost equivalent to that in imported phosphate ore in terms of both the amount and concentration.
Abstract: Summary The demand for biofuels has recently increased because of rising prices of fossil fuels and diversification of energy resources. As a result, the demand for sugarcane and corn has been increasing, not only for food production, but also as sources of energy. In this context, securing supplies of phosphorus, required as an essential nutrient in agricultural production, has considerable implications that extend beyond food and agricultural policy. It is therefore important to consider the quantity and availability of phosphorus resources that remain untapped, because the demand and supply of phosphate ore is currently becoming very tight, and Japan has no domestic phosphorus resources. To identify potential phosphorus resources, we have investigated the material flow of phosphorus within Japan, including that in the iron and steel industry, on the basis of statistical data for 2002. Our major finding is that the quantity of phosphorus in iron and steelmaking slag is almost equivalent to that in imported phosphate ore in terms of both the amount and concentration. We also found, by means of a waste input–output analysis and a total materials requirement study, that the phosphorus potentially recoverable from steelmaking slag by a new process that we have proposed has considerable environmental and economic benefits. Concerning the restricted supplies of phosphorus resource, it is important to consider the quantity and availability of phosphorus resources that currently remain untapped. From that viewpoint, steelmaking slag would be expected to be a great potential resource for phosphorus.

Journal ArticleDOI
TL;DR: Serum phosphorus concentration is weakly related to dietary phosphorus and not related to a diverse array of phosphorus-rich foods in the general population and is unlikely to be a result of differences in dietary intake or traditional cardiovascular risk factors.

Journal ArticleDOI
TL;DR: In this paper, two fertilizers, including straight nitrogen (N), phosphorus (P), potassium (K), and nitrogen oxides (NO), were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn).
Abstract: Anthropogenic activities like agriculture have resulted in increased concentrations of some trace elements of toxicological and environmental concern in soils. Application of fertilizers has been one of the major inputs of these contaminants to agricultural soils in developing countries. Twenty-two fertilizers, including straight nitrogen (N), phosphorus (P), potassium (K), and NK fertilizers and micronutrient sources, were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn). As expected, the trace element content of fertilizers was highly variable and related to the origin of the material. Phosphorus fertilizers, especially triple superphosphate, presented the highest As, Cd, Cu, Cr, Ni, V, and Zn concentrations. In some of these fertilizers, the Cr, V, and Zn contents reached values greater than 3475 mg kg−1 of...

Journal ArticleDOI
TL;DR: In this paper, the effects of arsenate, Fe2+, and phosphate on amount and composition of Fe-oxide plaque at the rice-root surface and on the yield and arsenic accumulation in rice (cv. BRRI dhan33) were studied in a replicated pot-culture experiment.
Abstract: The effects of arsenate, Fe2+, and phosphate on amount and composition of Fe-oxide plaque at the rice-root surface and on the yield and arsenic accumulation in rice (cv. BRRI dhan33) were studied in a replicated pot-culture experiment. Arsenic in the form of Na2HAsO4 was applied at concentrations of 0, 15 and 30 mg kg−1 in combination with P and/or Fe at 0 and 50 mg kg−1, from KH2PO4 and FeSO4, respectively. Root, grain and straw yields and their As, Fe and P concentrations were determined. The Fe-oxide plaque was extracted from the plant roots using dithionite-citrate-bicarbonate (DCB) and NH4-oxalate extractions. The addition of Fe2+ reduced the toxic effect of As in flooded-rice culture and resulted in reduced grain-As accumulation and increased grain yields. The effect of applied phosphate was the opposite, in that it resulted in higher As concentrations in both grain and straw and lower grain yields. The effects of both Fe and P can be explained based on their impacts on adsorption of As onto soil and rice-plaque Fe-oxides and the subsequent As solubility and availability for uptake by rice. These reactions have important implications to rice-crop management and the natural variability in soils and irrigation-water characteristics that might impact As uptake by rice.

Journal ArticleDOI
TL;DR: In this paper, the long-term changes in sediment and phosphorus loading to the upper Mississippi River were quantified from an array of 25 sediment cores from Lake Pepin, a large natural impoundment downstream of the Minneapolis-St Paul metropolitan area.
Abstract: Long-term changes in sediment and phosphorus loading to the upper Mississippi River were quantified from an array of 25 sediment cores from Lake Pepin, a large natural impoundment downstream of the Minneapolis-St Paul metropolitan area. Cores were dated and stratigraphically correlated using 210Pb, 137Cs, 14C, magnetic susceptibility, pollen analysis, and loss-on-ignition. All cores show a dramatic increase in sediment accumulation beginning with European settlement in 1830. Accumulation rates are highest and show the greatest post-settlement increases in the upper end of the lake. Present-day sediment-phosphorus concentrations are roughly twice those of pre-settlement times, and the Fe/Al-bound fraction makes up a greater portion of the total. Diatom assemblages record a marked increase in nutrient availability over the last 200 years, changing from clear-water benthic forms and mesotrophic planktonic taxa in pre-settlement times to exclusively planktonic assemblages characteristic of highly eutrophic conditions today. Lake-water total-phosphorus concentrations, estimated by weighted averaging regression and calibration, increased from 50 to 200 μg l−1 during this period. Sediment loading to Lake Pepin from the Mississippi River has increased by an order of magnitude since 1830. Modern fluxes are about 900,000 metric tons annually, and are more than 80% detrital mineral matter. About 17% of the lake’s volume in 1830 has been replaced by sediment, and at current accumulation rates the remainder will be filled in another 340 years. Phosphorus accumulation in Lake Pepin sediments has increased 15-fold since 1830, rising from 60 to 900 metric tons annually. This rise represents a sevenfold increase in phosphorus loading from the Mississippi River coupled with more efficient retention of phosphorus inflows by bottom sediments. More efficient trapping of phosphorus in Lake Pepin over the last century resulted from higher rates of sediment burial. The most dramatic changes in nutrient and sediment inputs to Lake Pepin have occurred since 1940, although gradual increases began shortly following European settlement. Sediment accumulation rates rose sharply between 1940 and 1970 and then leveled off, while phosphorus inflows record their largest increases after 1970.

Journal ArticleDOI
01 May 2009-Carbon
TL;DR: The results indicate that upon the incorporation of nitrogen at high temperatures not only new species involving carbon/nitrogen/oxygen are formed but also the phosphorous environment is significantly altered.

Book ChapterDOI
01 Jan 2009

Journal ArticleDOI
TL;DR: The high sorption capacity with respect to both iron and solids warrants further evaluation of biogenic iron oxides as a substrate for phosphorus removal, as well as other iron-rich substrates.