scispace - formally typeset
Search or ask a question
Topic

Phosphorus

About: Phosphorus is a research topic. Over the lifetime, 53120 publications have been published within this topic receiving 939731 citations. The topic is also known as: element 15 & P.


Papers
More filters
Journal ArticleDOI
TL;DR: Barley and tomato plants were cultured in nutrient solutions including 0-15 mol m 3 H2P04 and the phosphate supply was discontinued and the subsequent effects on growth, internal phosphorus concentrations, phosphate absorption and translocation were measured at frequent intervals.
Abstract: Barley and tomato plants were cultured in nutrient solutions including 0-15 mol m 3 H2P04. The phosphate supply was discontinued and the subsequent effects on growth, internal phosphorus concentrations, phosphate absorption and translocation were measured at frequent intervals. Growth rates were at first unchanged and the internal phosphorus concentration decreased. During this phase the rate of phosphate transport by the roots sometimes increased significantly. Growth slowed more in shoots than in roots during a second phase of stress development and visual symptoms of deficiency appeared in tomato but not in barley. During this phase, enhancement of phosphate uptake capacity reached a maximum in both species. The subsequent decline in uptake capacity was associated with visible symptoms of deficiency developing in barley and intensifying in tomato. When stressed plants were returned to a solution containing 0-15 mol m"3 H2P04 rapid absorption continued for several days after the internal phosphorus concentration had returned to the level of the controls. Phosphate toxicity may have been the cause of leaf lesions and necrosis during the 'recovery' phase. Stomatal conductance in tomato was decreased at an early stage of stress development. Foliar-applied phosphate was absorbed more rapidly by P-stressed barley leaves than by their controls and much larger amounts were translocated from the leaves to the roots.

153 citations

Journal ArticleDOI
TL;DR: A series of experiments designed to demonstrate the potential of using managed, attached algal production to permanently remove excess phosphorus from agricultural run-off is described in this paper, where the experiments were carried out on a secondary canal in the New Hope South region of the Florida Everglades Agricultural Area from October, 1991, to May, 1992.
Abstract: A series of experiments designed to demonstrate the potential of using managed, attached algal production to permanently remove excess phosphorus from agricultural run-off is described. The experiments were carried out on a secondary canal in the New Hope South region of the Florida Everglades Agricultural Area from October, 1991, to May, 1992. Natural algal populations of periphyton, including species of the genera Cladophora, Spirogyra, Enteromorpha, Stigeoclonium, and a variety of filamentous diatoms such as Eunotia and Melosira, were grown on plastic screens in raceways, under a wave surge regime. Considerable biomass production of algae occurred, and the resulting algal canopy also trapped plankton and organic particulates from the water column. A seven- to eight-day harvest interval was determined to be optimal, and both hand harvesting and vacuum harvesting were employed. The vacuum device is applicable to large scale-up. In source water having total phosphorus concentrations of 0.012–0.148 ppm, mean macro-recovery dry biomass production levels of 15–27 g/m2/day were achieved. The lower rates occurred in the winter, the higher rates in the late spring. Two techniques were employed to reduce losses of fine material at harvest during the March to May period. Gravity sieving increased mean dry production levels to 33–39 g/m2/day. The mean phosphorus content of harvested biomass ranged from 0.34% to 0.43%. Total phosphorus removal rates during the spring period of average solar intensity and low nutrient supply, by methods demonstrated in this study, ranged from 104 to 139 mgTP/m2/day (380–507 kgP/ha/year). Over the incoming nutrient range studied, phosphorus removal was independent of concentration and was 16.3% of total phosphorus for 15 m of raceway. Up-stream-downstream studies of overflowing water chemistry (total P, total dissolved -P, orthophosphate -P) showed highly -significant reductions of all phosphorus species. Total phosphorus reduction closely correlated with phosphorus yield from biomass removal. Yearly, minimum phosphorus removal rates are predicted that are 100–250 times that achieved both experimentally and in long-term, large-area wetland systems. Engineering scale-up to systems of hundreds of acres is being studied.

153 citations

Journal ArticleDOI
TL;DR: The bacteriophage T4 containing assimilated radioactive phosphorus is inactivated at a rate proportional to the specific radioactivity of the constituent phosphorus, and several phages related to T4 behave similarly.
Abstract: The bacteriophage T4 containing assimilated radioactive phosphorus is inactivated at a rate proportional to the specific radioactivity of the constituent phosphorus. The beta radiation from the phosphorus makes a negligible contribution to this effect. The inactivation is therefore a direct consequence of the nuclear reaction, which kills the phage with an efficiency of about 1/12. Several phages related to T4 behave similarly. When radioactive phage is grown from a seed of non-radioactive phage, all of the phage progeny are subject to killing by radioactive decay. The phage is killed by beta radiation from P32 with an efficiency of about 1/100 per ionization within the particle volume. Bacteriophage T4 and its relatives contain about 500,000 atoms of phosphorus per infective particle. Virtually all this phosphorus is adsorbed to bacteria with the specificity characteristic of the infective particles, and none of it can be removed from the particles by the enzyme desoxyribonuclease. The phosphorus content per particle, together with the published data on analytical composition, indicates a particle diameter close to 110 mµ for the varieties of phage studied.

153 citations

Journal ArticleDOI
TL;DR: In this article, the main purpose of the paper is to calculate cost effective nitrogen and phosphorus reductions to the Baltic Sea from the nine countries surrounding the Baltic sea from the 9 countries.
Abstract: Due to eutrophication caused by heavy loads of nitrogen and phosphorus, the biological conditions of the Baltic Sea have been disturbed: large sea bottom areas without any biological life, low stocks of cods, and toxic blue green algaes. It is recognized that the nitrogen and phosphorus loads to the Baltic Sea must be reduced by 50% in order to restore the sea. The main purpose of this paper is to calculate cost effective nitrogen and phosphorus reductions to the Baltic Sea from the nine countries surrounding the Baltic Sea. The results show a significant difference in minimum costs of decreasing nitrogen and phosphorus loads to the Sea: approximately 12 000 millions of SEK per year and 3 000 millions of SEK respectively for reductions by 50%. It is also shown that a change from a policy of cost-effective nutrient reductions to a policy where each country reduces the nutrient loads by 50% increase total costs for both nitrogen and phosphorus reductions by about 300%. The results are, however, sensitive to several of the underlying assumptions and should therefore be interpreted with much caution.

153 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantified the variation in glyphosate sorption and desorption to a coarse sandy soil and to a sandy loam soil with varying phosphorus content and pH.
Abstract: The sorption mechanism of glyphosate, one of the most frequently used herbicides in the world, resembles that of phosphate. This study quantifies the variation in glyphosate sorption and desorption to a coarse sandy soil and to a sandy loam soil with varying phosphorus content and pH. Using batch experiments, glyphosate adsorption and desorption isotherms were determined on soil samples taken from long-term field experiments that received different additions of phosphorus and lime during 60-year (coarse sand) and 100-year (sandy loam) periods. Sorption isotherms were non-linear and manifested adsorption desorption non-singularity. The isotherms were best fitted with an extended Freundlich model, which had earlier been shown to describe phosphate sorption data well. The phosphate content in the soils had a significant influence on the sorption of glyphosate. With 0.5 M bicarbonate extractable P (pH 8.5) increasing from 6.2 to 58.7 in the loamy sand and 9.1 to 87.4 in the coarse sand, the extended Freundlich adsorption coefficient (K f,MF,ads ) decreased from 214.7 to 106 and from 154.0 to 83.5, respectively. Liming of the coarse sandy soil resulted in stronger glyphosate sorption because of an increase of reactive amorphous aluminum and iron hydrous oxides with increasing pH values. Glyphosate competes with phosphate for sorption sites, a quality that might result in glyphosate being sorbed more weakly in soils with high phosphorus levels.

153 citations


Network Information
Related Topics (5)
Organic matter
45.5K papers, 1.6M citations
81% related
Copper
122.3K papers, 1.8M citations
78% related
Amino acid
124.9K papers, 4M citations
77% related
Carbon
129.8K papers, 2.7M citations
77% related
Calcium
78.5K papers, 2.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20232,479
20225,004
20211,546
20201,644
20191,746