scispace - formally typeset
Search or ask a question

Showing papers on "Photocatalysis published in 2008"


01 Jan 2008
TL;DR: A review of the current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy is discussed in this article.
Abstract: Abstract Scientific studies on photocatalysis started about two and a half decades ago. Titanium dioxide (TiO 2 ), which is one of the most basic materials in our daily life, has emerged as an excellent photocatalyst material for environmental purification. In this review, current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy are discussed together with some fundamental aspects. A novel photoinduced superhydrophilic phenomenon involving TiO 2 and its applications are presented.

6,294 citations


Journal ArticleDOI
TL;DR: This communication presents the recent results that the activity of photocatalytic H2 production can be significantly enhanced when a small amount of MoS2 is loaded on CdS as cocatalyst.
Abstract: This communication presents our recent results that the activity of photocatalytic H2 production can be significantly enhanced when a small amount of MoS2 is loaded on CdS as cocatalyst. The MoS2/CdS catalysts show high rate of H2 evolution from photocatalytic re-forming of lactic acid under visible light irradiation. The rate of H2 evolution on CdS is increased by up to 36 times when loaded with only 0.2 wt % of MoS2, and the activity of MoS2/CdS is even higher than those of the CdS photocatalysts loaded with different noble metals, such as Pt, Ru, Rh, Pd, and Au. The junction formed between MoS2 and CdS and the excellent H2 activation property of MoS2 are supposed to be responsible for the enhanced photocatalytic activity of MoS2/CdS.

1,733 citations


Journal ArticleDOI
TL;DR: The plasmonic photocatalysis will be of use as a high performance photocatalyst in nearly all current applications but will beof particular importance for applications in locations of minimal light exposure.
Abstract: Titanium dioxide (TiO2) displays photocatalytic behavior under near-ultraviolet (UV) illumination. In another scientific field, it is well understood that the excitation of localized plasmon polaritons on the surface of silver (Ag) nanoparticles (NPs) causes a tremendous increase of the near-field amplitude at well-defined wavelengths in the near UV. The exact resonance wavelength depends on the shape and the dielectric environment of the NPs. We expected that the photocatalytic behavior of TiO2 would be greatly boosted if it gets assisted by the enhanced near-field amplitudes of localized surface plasmon (LSP). Here we show that this is true indeed. We named this new phenomenon "plasmonic photocatalysis". The key to enable plasmonic photocatalysis is to deposit TiO2 on a NP comprising an Ag core covered with a silica (SiO2) shell to prevent oxidation of Ag by direct contact with TiO2. The most appropriate diameter for Ag NPs and thickness for the SiO2 shell giving rise to LSP in the near UV were estimated from Mie scattering theory. Upon implementing a device that took these design considerations into account, the measured photocatalytic activity under near UV illumination of such a plasmonic photocatalyst, monitored by decomposition of methylene blue, was enhanced by a factor of 7. The enhancement of the photocatalytic activity increases with a decreased thickness of the SiO2 shell. The plasmonic photocatalysis will be of use as a high performance photocatalyst in nearly all current applications but will be of particular importance for applications in locations of minimal light exposure.

1,422 citations


Journal ArticleDOI
TL;DR: It is shown that such a photocatalyst can be obtained from silver chloride by exploiting its photosensitivity, and the resulting plasmonic photoc atalyst is highly efficient and stable under visible-light illumination.
Abstract: Nanoparticles (NPs) of noble metals can strongly absorb visible light because of their plasmon resonance, which is greatly influenced by their morphology and size. The phenomenon of plasmon resonance gives rise to important applications such as colorimetric sensors, photovoltaic devices, photochromic devices, and photocatalysts. Noble metal NPs exhibit characteristic optical and physical properties that are substantially different from those of the corresponding bulk materials. In particular, silver NPs show efficient plasmon resonance in the visible region, which Awazu et al. recently utilized to develop a plasmonic photocatalyst. In their study, TiO2 was deposited on NPs consisting of a silver core covered with a silica (SiO2) shell to prevent oxidation of Ag by direct contact with TiO2. Under UV illumination, this plasmonic photocatalyst exhibits enhanced catalytic activity, which increases with decreasing thickness of the SiO2 shell. To enhance the activity of a plasmonic photocatalyst, it is desirable to deposit silver NPs directly onto the surface of an active dielectric substrate without a protective shell, because the near-field effect of the NPs will be more strongly felt by the substrate. Herein we show that such a photocatalyst can be obtained from silver chloride by exploiting its photosensitivity, and the resulting plasmonic photocatalyst is highly efficient and stable under visible-light illumination. Silver halides are photosensitive materials extensively used as source materials in photographic films. On absorbing a photon, a silver halide particle generates an electron and a hole, and subsequently the photogenerated electron combines with an Ag ion to form an Ag atom. Ultimately, a cluster of silver atoms is formed within a silver halide particle upon repeated absorption of photons. Due to this instability under sunlight, which provides the very basis for chemical photography, silver halides are seldom used as photocatalysts. Nevertheless, there have been reports that under UV/Vis illumination AgCl deposited on a conducting support photocatalyzes O2 production from water in the presence of a small excess of silver ions in solution, and that under UV illumination AgBr dispersed on a silica support photocatalyzes H2 production from CH3OH/H2O solution. [21] In their study on the AgBr/SiO2 photocatalyst, Kakuta et al. [21] observed that Ag species are formed on AgBr in the early stage of the reaction, and AgBr is not destroyed under successive UV illumination. As suggested by Kakuta et al., electron–hole separation may occur smoothly in the presence of Ag species, and the latter may catalyze H2 production from alcohol radicals formed by photo-induced holes. If so, silver NPs formed on silver halide particles might be expected to be a stable photocatalyst under visible-light illumination due to their plasmon resonance. This expectation led us to prepare a new photocatalyst active and stable under visible light, namely, AgCl particles with silver NPs formed on their surface, by first treating Ag2MoO4 with HCl to form AgCl powder and then reducing some Ag ions in the surface region of the AgCl particles to Ag species (for details, see the Experimental Section). For convenience, these are referred to as Ag@AgCl particles. The X-ray diffraction (XRD) pattern of the Ag@AgCl product clearly shows that the cubic phase of Ag with lattice constant a= 4.0861 A (JCPDS file: 65-2871) coexists with the cubic phase of AgCl with lattice constant a= 5.5491 A (JCPDS file: 31-1238; see Figure 1). Scanning electron microscopy (SEM) images of the Ag@AgCl product (Figure 2) reveal that silver NPs with diameters in the range of 20–150 nm are deposited on the surface of AgCl particles with diameters in the range of 0.2–1.3 mm. The UV/Vis diffuse-reflectance spectra of Ag@AgCl, AgCl, and N-doped TiO2 (used as reference photocatalyst) are compared in Figure 3. In contrast to AgCl and N-doped TiO2, Ag@AgCl has a strong adsorption in the visible region which is almost as strong as that in the UV region. This is attributed to the plasmon resonance of silver NPs deposited on AgCl particles. To evaluate the photooxidation capability of Ag@AgCl, we examined the decomposition of methylic orange (MO) dye in solution over the Ag@AgCl sample under visible-light irradiation as a function of time (Figure 4). For comparison, we also carried out decomposition of the MO dye in solution over the N-doped TiO2 reference photocatalyst under visible[*] P. Wang, Prof. Dr. B. Huang, X. Qin, Prof. X. Zhang, Dr. J. Wei State Key Lab of Crystal Materials Shandong University, Jinan 250100 (China) E-mail: bbhuang@sdu.edu.cn Homepage: http://www.icm.sdu.edu.cn/index.php

1,327 citations



Journal ArticleDOI
TL;DR: In this paper, the preparation methods of doped-TiO 2 with metallic and nonmetallic species, including various types of dopants and doping methods currently available, are reviewed.
Abstract: Titanium dioxide represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as antibacterial agent because of strong oxidation activity and superhydrophilicity. TiO 2 shows relatively high reactivity and chemical stability under ultraviolet light (λ 400 nm) should allow the main part of the solar spectrum, even under poor illumination of interior lighting, to be used. Visible light-activated TiO 2 could be prepared by metal-ion implantation, reducing of TiO 2 , non-metal doping or sensitizing of TiO 2 with dyes. This paper reviews preparation methods of doped-TiO 2 with metallic and nonmetallic species, including various types of dopants and doping methods currently available. The mechanism of heterogeneous photocatalysis in the presence of TiO 2 is also discussed.

893 citations


Journal ArticleDOI
TL;DR: Results show that hollow spheres can be more readily separated from the slurry system by filtration or sedimentation after photocatalytic reaction and reused than conventional powder photocatalyst, confirming ZnO hollow spheres is stability and not photocorroded.
Abstract: ZnO hollow spheres with porous crystalline shells were one-pot fabricated by hydrothermal treatment of glucose/ZnCl2 mixtures at 180 °C for 24 h, and then calcined at different temperatures for 4 h. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption−desorption isotherms. The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic decolorization of Rhodamine B aqueous solution at ambient temperature. The results indicated that the average crystallite size, shell thickness, specific surface areas, pore structures, and photocatalytic activity of ZnO hollow spheres could be controlled by varying the molar ratio of glucose to zinc ions (R). With increasing R, the photocatalytic activity increases and reaches a maximum value at R = 15, which can be attributed to the combined effects of several factors such as specific surface area, the porous structure and the crystallite size. Further...

765 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of silver in enhancing the photocatalytic activity has been studied by analyzing the emission properties of both ZnO and silver-modified ZnOs in the presence (emission increases) a...
Abstract: Highly photocatalytically active silver-modified ZnO has been prepared and the effect of silver modification was studied. The structural and optical properties were characterized by X-ray diffraction, Fourier transform IR, differential scanning calorimetry, BET surface area, Raman, UV−vis, and photoluminescence spectroscopy. The photocatalytic activity of these materials was studied by analyzing the degradation of an organic dye, rhodamine 6G (R6G), and it is found that 3 mol % silver-modified ZnO at 400 °C shows approximately four times higher rate of degradation than that of unmodified ZnO and a three times higher rate than that of commercial TiO2 photocatalyst Degussa P-25. It was also noted that the photocatalytic activity for the modified ZnO sample was five times higher than the unmodified sample using sunlight. The effect of silver in enhancing the photocatalytic activity has been studied by analyzing the emission properties of both ZnO and silver-modified ZnO in the presence (emission increases) a...

746 citations


Journal ArticleDOI
TL;DR: In this paper, photoelectrochemical measurements confirm an electronic interaction between TiO2 and graphite-like carbon, and the mechanism of the enhanced photocatalytic activity under UV irradiation is based on the high migration efficiency of photoinduced electrons at the graphitelike carbon/TiO2 interface.
Abstract: Surface hybridization of TiO2 with graphite-like carbon layers of a few molecular layers thickness yields efficient photocatalysts. Photoelectrochemical measurements confirm an electronic interaction between TiO2 and the graphite-like carbon. A TiO2 photocatalyst with a carbon shell of three molecular layers thickness (∼1 nm) shows the highest photocatalytic activity which is about two times higher than that of Degussa P25 TiO2 under UV light irradiation. The mechanism of the enhanced photocatalytic activity under UV irradiation is based on the high migration efficiency of photoinduced electrons at the graphite-like carbon/TiO2 interface, which is due to the electronic interaction between both materials. In addition, a high activity under visible light irradiation is observed after graphite-like carbon hybridization. TiO2's response is extended into the visible range of the solar spectrum due to the electronic coupling of π states of the graphite-like carbon and conduction band states of TiO2.

744 citations


Journal ArticleDOI
TL;DR: The experiment demonstrated that the photo-degradation efficiency of ZnO:Mn(2+) was significantly higher than that of undoped ZnNO and might also be better than the conventional metal oxide semiconductor such as TiO(2) using MB as a contaminant.

736 citations


Journal ArticleDOI
TL;DR: In this article, a review focusing on the heterogeneous photocatalytic treatment of organic dyes in air and water is presented, which includes historical aspects, dark adsorption of the dye on the semiconductor surface and its role in the subsequent photoreaction, semiconductor preparation details, photoreactor configurations, photooxidation kinetics/mechanisms and comparison with other Advanced Oxidation Processes (e.g., UV/H 2 O 2, ozonation, UV/O 3, Fenton and photo-Fenton reactions), visible light-
Abstract: This review focuses on the heterogeneous photocatalytic treatment of organic dyes in air and water. Representative studies spanning approximately three decades are included in this review. These studies have mostly used titanium dioxide (TiO 2 ) as the inorganic semiconductor photocatalyst of choice for decolorizing and decomposing the organic dye to mineralized products. Other semiconductors such as ZnO, CdS, WO 3 , and Fe 2 O 3 have also been used, albeit to a much smaller extent. The topics covered include historical aspects, dark adsorption of the dye on the semiconductor surface and its role in the subsequent photoreaction, semiconductor preparation details, photoreactor configurations, photooxidation kinetics/mechanisms and comparison with other Advanced Oxidation Processes (e.g., UV/H 2 O 2 , ozonation, UV/O 3 , Fenton and photo-Fenton reactions), visible light-induced dye decomposition by sensitization mechanism, reaction intermediates and toxicity issues, and real-world process scenarios.

Journal ArticleDOI
TL;DR: A mechanism for the enhanced reactivity is proposed in which electrons are shuttled from TiO2 particles to the SWCNTs as a result of an optimalTiO2/ CNT arrangement that stabilizes charge separation and reduces charge recombination.
Abstract: Electron−hole recombination limits the efficiency of TiO2 photocatalysis. We have investigated the efficacy with which anatase/carbon nanotube (CNT) composite materials reduce charge recombination and enhance reactivity. We synthesized nanostructured assemblies composed of different proportions of anatase (5 or 100 nm) and either single-or multi-walled CNTs. The composites were prepared using a simple low temperature process in which CNTs and anatase nanoparticles were dispersed in water, dehydrated at 80 °C, and dried at 104 °C. The structures of the various TiO2/CNT composites were characterized by scanning electron microscopy (SEM) and their function was tested by phenol oxidation. Charge recombination was compared by measuring the photoluminescence spectra of select composites. We found that a nanostructured composite assembled from the 100 nm anatase and single-walled CNTs (SWCNTs) exhibited enhanced and selective photocatalytic oxidation of phenol in comparison to both pure anatase and Degussa P25. ...

Journal ArticleDOI
TL;DR: The dramatic visible light photocatalytic activity was obtained for the degradation of Methylene Blue and Rhodamine B under visible light irradiation after TiO2 photocatallysts were modified with monolayer dispersed polyaniline (PANI) via a facile chemisorption approach.
Abstract: The dramatic visible light photocatalytic activity was obtained for the degradation of Methylene Blue (MB) and Rhodamine B (RhB) under visible light irradiation (λ > 450 nm) after TiO2 photocatalysts were modified with monolayer dispersed polyaniline (PANI ) via a facile chemisorption approach. Under visible light irradiation, PANI generated π−π* transition, delivering the excited electrons into the conduction band of TiO2, and then the electrons transferred to an adsorbed electron acceptor to yield oxygenous radicals to degrade pollutants. Also, the ultraviolet photocatalytic performance was enhanced to about two times compared with that of P-25 TiO2 photocatalyst. The high photocatalytic activity came from the synergetic effect between PANI and TiO2, which promoted the migration efficiency of photogenerated carriers on the interface of PANI and TiO2. Under ultraviolet light irradiation, photoinduced holes in TiO2 valence band could transfer into HOMO orbital of PANI and then emigrate to the photocatalys...

Journal ArticleDOI
TL;DR: The new O-Ti-B-N structure formed on the surface of the photocatalyst is highly active in collecting and separating the charge carriers, thereby greatly enhancing the visible light photocatalytic activity.
Abstract: Add an N: The visible-light absorption of boron-doped mesoporous TiO2 depends strongly on the state of the dopant (see picture), although the activity can be substantially enhanced by additional doping of nitrogen. The new O-Ti-B-N structure formed on the surface of the photocatalyst is highly active in collecting and separating the charge carriers, thereby greatly enhancing the visible light photocatalytic activity.

Journal ArticleDOI
TL;DR: In this paper, the dispersity of Ag clusters and/or nanoparticles in Ag/ZnO nanocatalyst is investigated by EDX mapping and XPS techniques, and the experimental results show that deposition-precipitation is an efficient method to synthesize Ag/ ZnO nanoparticles.
Abstract: Ag/ZnO heterostructure nanocatalysts with Ag content of 1 wt % are successfully prepared through three different simple methods, where chemical reduction and photolysis reaction are adopted to fabricate the heterostructure. The dispersity of Ag clusters and/or nanoparticles in Ag/ZnO nanocatalyst is investigated by EDX mapping and XPS techniques. The experimental results show that deposition-precipitation is an efficient method to synthesize Ag/ZnO nanocatalyst with highly dispersed Ag clusters and/or nanoparticles; the photocatalytic activity of Ag/ZnO photocatalysts mainly depends on the dispersity of metallic Ag in Ag/ZnO nanocatalyst; the higher the dispersity of metallic Ag in Ag/ZnO nanocatalyst is, the higher the photocatalytic activity of Ag/ZnO photocatalyst should be. In addition, it is also found that the dispersity of Ag/ZnO photocatalyst in the dye solution is another key factor for liquid-phase photocatalysis due to the UV-light utilizing efficiency. The higher the UV-light utilizing efficiency is, the higher the photocatalytic activity of Ag/ZnO heterostructure photocatalyst should be.

Journal ArticleDOI
TL;DR: This work reports visible light photocatalysis using highly controlled hybrid gold-tipped CdSe nanorods (nanodumbbells), a promising route for harnessing of solar energy to perform useful chemical reactions and to convert light to chemical energy.
Abstract: Visible light photocatalysis is a promising route for harnessing of solar energy to perform useful chemical reactions and to convert light to chemical energy. Nanoscale photocatalytic systems used to date were based mostly on oxide semiconductors aided by metal deposition and were operational only under UV illumination. Additionally, the degree of control over particle size and shape was limited. We report visible light photocatalysis using highly controlled hybrid gold-tipped CdSe nanorods (nanodumbbells). Under visible light irradiation, charge separation takes place between the semiconductor and metal parts of the hybrid particles. The charge-separated state was then utilized for direct photoreduction of a model acceptor molecule, methylene blue, or alternatively, retained for later use to perform the reduction reaction in the dark.


Journal ArticleDOI
TL;DR: The nanostructured rutile samples, prepared ex TiCl4 at very low temperature, ensured a selectivity toward the aldehyde 3 to 4-fold higher than the commercial rutiles tested (Sigma-Aldrich).
Abstract: Selective photocatalytic oxidation of aromatic alcohols to aldehydes was performed in water in the presence of TiO2 rutile photocatalysts that exhibited a low degree of crystallinity. The nanostructured rutile samples, prepared ex TiCl4 at very low temperature, ensured a selectivity toward the aldehyde 3 to 4-fold higher than the commercial rutile tested (Sigma-Aldrich).

Journal ArticleDOI
TL;DR: In this paper, the peroxide gel route is employed to synthesize N-doped TiO2 nanoparticles (NP) at low temperature using titanium tetraisopropoxide, ethylmethylamine, and hydrogen peroxide as precursors.
Abstract: The peroxide gel route is employed to synthesize N-doped TiO2 nanoparticles (NP) at low temperature using titanium tetraisopropoxide, ethylmethylamine, and hydrogen peroxide as precursors. Structural studies show anatase phase in the undoped titania NPs as well as at 5 at. % N-doped titania NPs, although with a degree of matrix disorder in the latter case. The annealing of N-doped titania NPs at different temperatures shows that above 400 °C nitrogen escapes the O−Ti−O matrix and at 500 °C the sample becomes crystalline. Transmission electron microscopy reveals that the particle size is in the range of 20−30 nm for the undoped TiO2 but only 5−10 nm for N-doped TiO2. At higher nitrogen concentration (10 at. %) bubble-like agglomerates form. FTIR and photoluminescence quenching also confirm the incorporation of nitrogen in anatase TiO2. Optical properties reveal an extended tailing of the absorption edge toward the visible region upon nitrogen doping. X-ray photoelectron spectroscopy is used to examine the ...

Journal ArticleDOI
Miaoliang Huang1, Chunfang Xu1, Zibao Wu1, Yunfang Huang1, Jianming Lin1, Jihuai Wu1 
TL;DR: Pt modified TiO2 loaded on natural zeolites (Pt-TiO2/zeolites) was prepared by sol-gel technique and photoreductive deposition method.


Journal ArticleDOI
TL;DR: Although there seems to be no simple correlation between the activity and the common physicochemical parameters of photocatalysts, the substrate-specific activity was analyzed and discussed in terms of various parameters such as surface area, crystallinity, surface charge, and substrate adsorption.
Abstract: The multidimensional aspects of the photocatalytic activity were investigated in a systematic way. The photocatalytic activities of eight commercial TiO2 samples were quantified by employing 19 test substrates (phenols, organic acids, amines, chlorohydrocarbons, dyes, inorganic ions, etc.) in terms of their degradation or conversion rates in water. The measured activities exhibited a complex behavior that depends on the test substrate. The photocatalytic activities are roughly correlated only among structurally related compounds. The photocatalytic activities can be represented in many different ways, and even the relative activity order among the tested photocatalysts depends on what substrate is used. Each TiO2 (among eight samples) showed the best activity for at least one test-substrate. This highly substrate-specific activity of TiO2 photocatalysts hinders the straightforward comparison of which catalyst is better than others. Even the common belief that anatase is more photoactive than rutile cannot be fully supported on the basis of the present data set. Although there seems to be no simple correlation between the activity and the common physicochemical parameters of photocatalysts, the substrate-specific activity was analyzed and discussed in terms of various parameters such as surface area, crystallinity, surface charge, and substrate adsorption. Finally, the multivalue photocatalytic activity test in relation with water treatment application was proposed to take the substrate-specificity into account.

Journal ArticleDOI
TL;DR: In this paper, the photocatalytic activity of self-organized TiO 2 nanotubular structures was investigated and metal particle catalyst systems were demonstrated to be highly efficient for the UV-light induced photocatalysis decomposition of a model organic pollutant.

Journal ArticleDOI
TL;DR: In this paper, a variety of combinations of CdS, TiO2, and Pt in preparing the hybrid catalysts were studied for hydrogen production under visible light (λ > 420 nm) irradiation.
Abstract: A variety of combinations of CdS, TiO2, and Pt in preparing the hybrid catalysts were studied for hydrogen production under visible light (λ > 420 nm) irradiation. The preparation method sensitively influenced the activity of the ternary hybrid catalysts. The formation of the potential gradient at the interface between CdS and TiO2 is necessary in achieving the efficient charge separation and transfer and how the platinum as a cocatalyst is loaded onto the CdS/TiO2 hybrid catalysts determines the overall hydrogen production efficiency. The common method of photoplatinization of CdS/TiO2 hybrid [Pt-(CdS/TiO2)] was much less efficient than the present method in which Pt was photodeposited on bare TiO2, which was followed by the deposition of CdS [CdS/(Pt-TiO2)]. The CdS/(Pt-TiO2) has the hydrogen production rate ranging (6–9) × 10−3 mol h−1 g−1, which is higher by a factor of 3–30 than that of Pt-(CdS/TiO2). The photocatalytic activity of the ternary hybrid catalysts was extremely sensitive to where the platinum is loaded. The photoactivity of the hybrid catalyst was also assessed in terms of the photocurrent collected by the methyl viologen electron shuttle in the catalyst suspension. CdS/(Pt-TiO2) generated higher photocurrents than Pt-(CdS/TiO2) by a factor of 2–7. The extreme sensitivity of the preparation method to the hydrogen production activity should be taken into account when hybrid photocatalysts are designed and prepared.

Journal ArticleDOI
TL;DR: In this article, the photocatalytic activity of the system using the Pt co-catalyst decreased as the partial pressures of evolved H 2 and O 2 were increased, while the activity of a Ru co-cateralyst for overall water splitting was as high as that of a Pt cocatalyst.

Journal ArticleDOI
Qi Wang1, Chuncheng Chen1, Dan Zhao1, Wanhong Ma1, Jincai Zhao1 
14 Jun 2008-Langmuir
TL;DR: It was found that, in the treatment of TiO2 by HF etching, F(-) not only displaces surface HO(-) but also substitutes some surface lattice oxygen, which drastically changed the photocatalytic degradation kinetics and mechanisms after surface fluorination.
Abstract: Surface-fluorinated TiO2 (F-TiO2) particles were prepared via the HF etching method. The surface characteristics of fluorinated TiO2, the adsorption modes of dyes, and the reaction pathways for the photocatalytic degradation of dye pollutants under visible light irradiation were investigated. It was found that, in the treatment of TiO2 by HF etching, F− not only displaces surface HO− but also substitutes some surface lattice oxygen. Using zwitterionic Rhodamine B (RhB) dye as a model, the change of the adsorption mode of RhB on F-TiO2 relative to that on pure TiO2 was validated by adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and IR techniques for the first time. RhB preferentially anchors on pure TiO2 through the carboxylic (−COOH) group, while its adsorption group is switched to the cationic moiety (−NEt2 group) on F-TiO2. Both the photocatalytic degradation kinetics and mechanisms were drastically changed after surface fluorination. Dyes with positively charged nitrogen-alkyl groups suc...

Journal ArticleDOI
Zhenfeng Bian1, Jian Zhu1, Shaohua Wang1, Yong Cao1, Xufang Qian1, Hexing Li1 
TL;DR: In this paper, a Bi2O3/TiO2 nanocrystalline with ordered mesoporous structure is synthesized by ab evaporation-induced self-assembly method.
Abstract: Bi2O3/TiO2 nanocrystallines with ordered mesoporous structure are synthesized by ab evaporation-induced self-assembly method. During liquid-phase photocatalytic degradation of p-chlorophenol under visible illumination (λ > 420 nm), this catalyst exhibits high activity owing to the synergetic effects of both the Bi2O3-photosensitization and the unique structural characteristics. The Bi2O3-photosensitization of TiO2 could extend the spectral response from UV to visible area, making the Bi2O3/TiO2 photocatalyst easily activated by visible lights. The ordered mesoporous channels facilitate the diffusion of reactant molecules. Meanwhile, the high surface area could enhance the Bi2O3 dispersion, the light harvesting, and the reactant adsorption. Furthermore, the highly crystallized anatase may promote the transfer of photoelectrons from bulk to surface and thus inhibit their recombination with photoholes, leading to enhanced quantum efficiency.

Journal ArticleDOI
TL;DR: In this article, the photocatalytic degradation of phenol aqueous solution under visible light irradiation was evaluated using PANI-modified TiO2 composites with different PANI contents.
Abstract: Titanium dioxide nanoparticles were modified by polyaniline (PANI) using ‘in situ’ chemical oxidative polymerization method in hydrochloric acid solutions. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy spectrum (XPS) and UV–vis spectra were carried out to characterize the composites with different PANI contents. The photocatalytic degradation of phenol was chosen as a model reaction to evaluate the photocatalytic activities of the modified catalysts. Results show that TiO2 nanoparticles are deposited by PANI to mitigate TiO2 particles agglomeration. The modification does not alter the crystalline structure of the TiO2 nanoparticles according to the X-ray diffraction patterns. UV–vis spectra reveal that PANI-modified TiO2 composites show stronger absorption than neat TiO2 under the whole range of visible light. The resulting PANI-modified TiO2 composites exhibit significantly higher photocatalytic activity than that of neat TiO2 on degradation of phenol aqueous solution under visible light irradiation (λ ≥ 400 nm). An optimum of the synergetic effect is found for an initial molar ratio of aniline to TiO2 equal to 1/100.

Journal ArticleDOI
Hongbo Fu1, Shicheng Zhang1, Tongguang Xu1, Yongfa Zhu1, Jianmin Chen1 
TL;DR: The result indicated that more RhB molecules were degraded via the deethylation process in the fluorinated Bi2WO6 system, which was proposed that the (F-)-containing function on the catalyst surface could serve as an electron-trapping site and enhance interfacial electron-transfer rates by tightly holding trapped electrons.
Abstract: Fluorinated Bi2WO6 catalyst was synthesized by a simple hydrothermal process. The effects of fluorine doping on crystal structure, optical property, photoinduced hydrophilicity, surface acidity, and photocatalytic activity of the as-prepared sample were observed in detail. Fluorinated Bi2WO6 presented the enhanced photoactivity for the RhB degradation under the simulative sunlight (λ > 290 nm), which could be a synergetic effect of the surface fluorination and the doping of crystal lattice. To get a better handle on the mechanistic details of this photocatalytic system, the photodegradation process of RhB was examined. In the fluorinated Bi2WO6 system, five intermediates, namely, N,N-diethyl-N′-ethylrhodamine, N,N-diethylrohodamine, N-ethyl-N′-ethylrhodamine, N-ethylrhodamine, and rhodamine were thus identified, whereas the first three intermediates could only be identified in the case of the Bi2WO6 system. This result indicated that more RhB molecules were degraded via the deethylation process in the flu...

Journal ArticleDOI
TL;DR: A comprehensive review of the UV-TiO2 photocatalytic oxidation process was conducted with an insight into the mechanism involved, catalyst TiO2, irradiation sources, types of reactors, comparison between effective modes of TiOO2 application as immobilized on surface or as suspension, and photocATalytic hybrid membrane system.
Abstract: Advanced oxidation processes (AOPs) with UV irradiation and photocatalyst titanium dioxide (TiO2) are gaining growing acceptance as an effective wastewater treatment method. A comprehensive review of the UV-TiO2 photocatalytic oxidation process was conducted with an insight into the mechanism involved, catalyst TiO2, irradiation sources, types of reactors, comparison between effective modes of TiO2 application as immobilized on surface or as suspension, and photocatalytic hybrid membrane system. Photocatalytic degradation technique with titanium dioxide is generally applied for treating wastewater containing organic contaminants due to its ability to achieve complete mineralization of the organic contaminants under mild conditions such as ambient temperature and ambient pressure. Recently, photocatalysis studies using TiO2 have been gaining attention for the degradation of persistent organic pollutants and other organic chemicals which are known to be endocrine disruptors. Treatment of wastewater in a titanium dioxide-suspended slurry reactor has been widely utilized due to its simplicity and enhanced degradation efficiency. However, this system requires separation of TiO2 from water after the photocatalytic process. The final section of the manuscript focuses on the removal of TiO2 using a membrane hybrid system. A two-stage coagulation and sedimentation process coupled with microfiltration hollow-fibre membrane process was found to achieve complete removal of TiO2, and the recovered TiO2 can be reused for a photocatalytic process after regeneration.