scispace - formally typeset
Search or ask a question
Topic

Photocatalysis

About: Photocatalysis is a research topic. Over the lifetime, 67088 publications have been published within this topic receiving 2145233 citations. The topic is also known as: photocatalyst.


Papers
More filters
Journal ArticleDOI
TL;DR: For the novel visible light photoactivity of Au/TiO(2), it has been determined that gold loading, particle size and calcination temperature play a role in the photocatalytic activity, the most active material being the catalyst containing 0.2 wt % gold with 1.87 nm average particle size.
Abstract: Gold nanoparticles supported on P25 titania (Au/TiO2) exhibit photocatalytic activity for UV and visible light (532 nm laser or polychromatic light λ > 400 nm) water splitting. The efficiency and operating mechanism are different depending on whether excitation occurs on the titania semiconductor (gold acting as electron buffer and site for gas generation) or on the surface plasmon band of gold (photoinjection of electrons from gold onto the titania conduction band and less oxidizing electron hole potential of about −1.14 V). For the novel visible light photoactivity of Au/TiO2, it has been determined that gold loading, particle size and calcination temperature play a role in the photocatalytic activity, the most active material (ΦH2 = 7.5% and ΦO2 = 5.0% at 560 nm) being the catalyst containing 0.2 wt % gold with 1.87 nm average particle size and calcined at 200 °C.

930 citations

Journal ArticleDOI
TL;DR: In this article, a polymeric g-C3N4 layered materials with high surface areas were synthesized efficiently from an oxygen-containing precursor by directly treating urea in air between 450 and 600 °C, without the assistance of a template.
Abstract: In order to develop efficient visible light driven photocatalysts for environmental applications, novel polymeric g-C3N4 layered materials with high surface areas are synthesized efficiently from an oxygen-containing precursor by directly treating urea in air between 450 and 600 °C, without the assistance of a template for the first time. The as-prepared g-C3N4 materials with strong visible light absorption have a band gap around 2.7 eV. The crystallinity and specific surface areas of g-C3N4 increases simultaneously when the heating temperatures increases. The g-C3N4 materials are demonstrated to exhibit much higher visible light photocatalytic activity than that of C-doped TiO2 and g-C3N4 prepared from dicyanamide for the degradation of aqueous RhB. The large surface areas, layered structure and band structure in all contributed to the efficient visible light photocatalytic activity. The efficient synthesis method for g-C3N4 combined with efficient photocatalytic activity is of significant interest for environmental pollutants degradation and solar energy conversion in large scale applications.

927 citations

Journal ArticleDOI
TL;DR: In this article, advances in the strategies for the visible light activation, origin of visible light activity, and electronic structure of various visible-light active TiO 2 photocatalysts are discussed in detail.
Abstract: The remarkable achievement by Fujishima and Honda (1972) in the photo-electrochemical water splitting results in the extensive use of TiO 2 nanomaterials for environmental purification and energy storage/conversion applications. Though there are many advantages for the TiO 2 compared to other semiconductor photocatalysts, its band gap of 3.2 eV restrains application to the UV-region of the electromagnetic spectrum ( λ ≤ 387.5 nm). As a result, development of visible-light active titanium dioxide is one of the key challenges in the field of semiconductor photocatalysis. In this review, advances in the strategies for the visible light activation, origin of visible-light activity, and electronic structure of various visible-light active TiO 2 photocatalysts are discussed in detail. It has also been shown that if appropriate models are used, the theoretical insights can successfully be employed to develop novel catalysts to enhance the photocatalytic performance in the visible region. Recent developments in theory and experiments in visible-light induced water splitting, degradation of environmental pollutants, water and air purification and antibacterial applications are also reviewed. Various strategies to identify appropriate dopants for improved visible-light absorption and electron–hole separation to enhance the photocatalytic activity are discussed in detail, and a number of recommendations are also presented.

921 citations

Journal ArticleDOI
TL;DR: This paper aims to inspire readers to search for further new applications for this material in catalysis and in other fields by describing the methods used for synthesizing this material with different textural structures and surface morphologies.
Abstract: Graphitic carbon nitride, g-C3N4, is a polymeric material consisting of C, N, and some impurity H, connected via tris-triazine-based patterns. Compared with the majority of carbon materials, it has electron-rich properties, basic surface functionalities and H-bonding motifs due to the presence of N and H atoms. It is thus regarded as a potential candidate to complement carbon in material applications. In this review, a brief introduction to g-C3N4 is given, the methods used for synthesizing this material with different textural structures and surface morphologies are described, and its physicochemical properties are referred. In addition, four aspects of the applications of g-C3N4 in catalysis are discussed: (1) as a base metal-free catalyst for NO decomposition, (2) as a reference material in differentiating oxygen activation sites for oxidation reactions over supported catalysts, (3) as a functional material to synthesize nanosized metal particles, and (4) as a metal-free catalyst for photocatalysis. Th...

919 citations

Journal ArticleDOI
TL;DR: The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out by new thermal decomposition method, which is simple and cost effective.

911 citations


Network Information
Related Topics (5)
Adsorption
226.4K papers, 5.9M citations
92% related
Nanoparticle
85.9K papers, 2.6M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Catalysis
400.9K papers, 8.7M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202310,115
202219,607
20217,090
20206,542
20196,581