scispace - formally typeset
Search or ask a question
Topic

Photocatalysis

About: Photocatalysis is a research topic. Over the lifetime, 67088 publications have been published within this topic receiving 2145233 citations. The topic is also known as: photocatalyst.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a novel S-scheme heterojunction of TaON/Bi2MoO6 with a core-shell structure was constructed via an electrospinning-calcination-nitridation approach, where 2D Bi2MO6 nanosheets are uniformly and firmly anchored on the surface of 1D TaON nanofibers.

300 citations

Journal ArticleDOI
TL;DR: Honeycomb-like g-C3N4 was synthesized via thermal condensation of urea with addition of water at 450 °C for 1 h and showed highly enhanced photocatalytic activity with an NO removal ratio of 48% and could be used repeatedly for large-scale applications.
Abstract: Graphitic carbon nitride (g-C3N4) is a visible light photocatalyst, limited by low activity mainly caused by rapid recombination of charge carriers. In the present work, honeycomb-like g-C3N4 was synthesized via thermal condensation of urea with addition of water at 450 °C for 1 h. Prolonging the condensation time caused the morphology of g-C3N4 to change from a porous honeycomb structure to a velvet-like nanoarchitecture. Unlike in previous studies, the photocatalytic activity of g-C3N4 decreased with increasing surface area. The honeycomb-like g-C3N4 with a relatively low surface area showed highly enhanced photocatalytic activity with an NO removal ratio of 48%. The evolution of NO2 intermediate was dramatically inhibited over the honeycomb-like g-C3N4. The short and long lifetimes of the charge carriers for honeycomb-like g-C3N4 were unprecedentedly prolonged to 22.3 and 165.4 ns, respectively. As a result, the honeycomb-like g-C3N4 was highly efficient and stable in activity and could be used repeatedly. Addition of water had the following multiple positive effects on g-C3N4: (1) formation of the honeycomb structure, (2) promotion of charge separation and migration, (3) enlargement of the band gap, (4) increase in production yield, and (5) decrease in energy cost. These advantages make the present preparation method for highly efficient g-C3N4 extremely appealing for large-scale applications. The active species produced from g-C3N4 under illumination were confirmed using DMPO-ESR spin-trapping, the reaction intermediate was monitored, and the reaction mechanism of photocatalytic NO oxidation by g-C3N4 was revealed. This work could provide an attractive alternative method for mass-production of highly active g-C3N4-based photocatalysts for environmental and energetic applications.

300 citations

Journal ArticleDOI
TL;DR: One-dimensional In(2)O(3)-TiO( 2) heteroarchitectures with high visible-light photocatalytic activity have been successfully obtained by a simple combination of electrospinning technique and solvothermal process and could be easily recycled without the decrease in the photocatallytic activity because of their one-dimensional nanostructural property.
Abstract: One-dimensional In(2)O(3)-TiO(2) heteroarchitectures with high visible-light photocatalytic activity have been successfully obtained by a simple combination of electrospinning technique and solvothermal process. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis spectra. The results revealed that the secondary In(2)O(3) nanostructures were successfully grown on the primary TiO(2) nanofibers substrates. Compared with the pure TiO(2) nanofibers, the obtained In(2)O(3)-TiO(2) heteroarchitectures showed enhancement of the visible-light photocatalytic activity to degrade rhodamine B (RB) because of the formation of heteroarchitectures, which might improve the separation of photogenerated electrons and holes derived from the coupling effect of TiO(2) and In(2)O(3) heteroarchitectures. Moreover, the In(2)O(3)-TiO(2) heteroarchitectures could be easily recycled without the decrease in the photocatalytic activity because of their one-dimensional nanostructural property.

300 citations

Journal ArticleDOI
TL;DR: It was proven that adsorption of dye molecules onto the support material is essential for the processes to be effective and even if their mechanisms differ during the early stages, photocatalysis and photosensitization lead to very similar ultimate breakdown products.

300 citations

Journal ArticleDOI
TL;DR: The electrochemiluminescence performance of MAPbI3 is investigated to explore the charge transfer process, to find that the photogenerated electrons in MAPbi3 are transferred to the rGO sites, where protons are reduced to H2 .
Abstract: A facile and efficient photoreduction method is employed to synthesize the composite of methylammonium lead iodide perovskite (MAPbI3 ) with reduced graphene oxide (rGO). This MAPbI3 /rGO composite is shown to be an outstanding visible-light photocatalyst for H2 evolution in aqueous HI solution saturated with MAPbI3 . Powder samples of MAPbI3 /rGO (100 mg) show a H2 evolution rate of 93.9 µmol h-1 , which is 67 times faster than that of pristine MAPbI3 , under 120 mW cm-2 visible-light (λ ≥ 420 nm) illumination, and the composite is highly stable showing no significant decrease in the catalytic activity after 200 h (i.e., 20 cycles) of repeated H2 evolution experiments. The electrochemiluminescence performance of MAPbI3 is investigated to explore the charge transfer process, to find that the photogenerated electrons in MAPbI3 are transferred to the rGO sites, where protons are reduced to H2 .

300 citations


Network Information
Related Topics (5)
Adsorption
226.4K papers, 5.9M citations
92% related
Nanoparticle
85.9K papers, 2.6M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Catalysis
400.9K papers, 8.7M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202310,115
202219,607
20217,090
20206,542
20196,581