scispace - formally typeset
Search or ask a question
Topic

Photocatalysis

About: Photocatalysis is a research topic. Over the lifetime, 67088 publications have been published within this topic receiving 2145233 citations. The topic is also known as: photocatalyst.


Papers
More filters
Journal ArticleDOI
TL;DR: A mechanism for the enhanced reactivity is proposed in which electrons are shuttled from TiO2 particles to the SWCNTs as a result of an optimalTiO2/ CNT arrangement that stabilizes charge separation and reduces charge recombination.
Abstract: Electron−hole recombination limits the efficiency of TiO2 photocatalysis. We have investigated the efficacy with which anatase/carbon nanotube (CNT) composite materials reduce charge recombination and enhance reactivity. We synthesized nanostructured assemblies composed of different proportions of anatase (5 or 100 nm) and either single-or multi-walled CNTs. The composites were prepared using a simple low temperature process in which CNTs and anatase nanoparticles were dispersed in water, dehydrated at 80 °C, and dried at 104 °C. The structures of the various TiO2/CNT composites were characterized by scanning electron microscopy (SEM) and their function was tested by phenol oxidation. Charge recombination was compared by measuring the photoluminescence spectra of select composites. We found that a nanostructured composite assembled from the 100 nm anatase and single-walled CNTs (SWCNTs) exhibited enhanced and selective photocatalytic oxidation of phenol in comparison to both pure anatase and Degussa P25. ...

557 citations

Journal ArticleDOI
TL;DR: In this paper, a rice crust-like structure was achieved through the uniform distribution of TiO2 nanoparticles on MXene Ti3C2 through calcination method and a unique rice crustlike structure of the prepared samples rendered the composite with large population of the surface active sites.

557 citations

Journal ArticleDOI
Xiaofei Yang1, Cui Haiying1, Yang Li1, Jieling Qin1, Rongxian Zhang1, Hua Tang1 
TL;DR: In this article, a facile and effective hydrothermal method for the fabrication of the Ag3PO4-graphene visible light photocatalyst has been developed to improve the photocatalytic performance and stability of Ag-PO4, and also to reduce the high cost of Ag 3PO4 for practical uses.
Abstract: A facile and effective hydrothermal method for the fabrication of the Ag3PO4-graphene (Ag3PO4-GR) visible light photocatalyst has been developed to improve the photocatalytic performance and stability of Ag3PO4, and also to reduce the high cost of Ag3PO4 for practical uses. The size and morphology of Ag3PO4 particles could be tailored by the electrostatically driven assembly of Ag+ on graphene oxide (GO) sheets and by the controlled growth of Ag3PO4 particles on the GO surface. The generation of Ag3PO4 and the transformation of GO to GR can be achieved simultaneously in the hydrothermal process. The improved photocatalytic activity of Ag3PO4-GR composites under visible light irradiation is attributed to high-surface-area GR sheets, enhanced absorption of organic dyes, and more efficient separation of photogenerated electron–hole pairs. The transfer of photogenerated electrons from the surface of Ag3PO4 to GR sheets also reduces the possibility of decomposing Ag+ to metallic Ag, suggesting an improved stab...

553 citations

Journal ArticleDOI
Jinjuan Xue1, Shuaishuai Ma1, Yuming Zhou1, Zewu Zhang1, Man He1 
TL;DR: A novel plasmonic photocatalyst, Au/Pt/g-C3N4, was prepared by a facile calcination-photodeposition technique and enhanced photocatalytic activity for antibiotic tetracycline hydrochloride (TC-HCl) degradation was attributed to the surface plAsmon resonance effect of Au and electron-sink function of Pt nanoparticles, synergistically facilitating the photocatalysis process.
Abstract: A novel plasmonic photocatalyst, Au/Pt/g-C3N4, was prepared by a facile calcination-photodeposition technique. The samples were characterized by X-ray diffraction, energy-dispersive spectroscopy, transmission electron microscopy, and UV–vis diffuse reflectance spectroscopy, and the results demonstrated that the Au and Pt nanoparticles (7–15 nm) were well-dispersed on the surfaces of g-C3N4. The Au/Pt codecorated g-C3N4 heterostructure displayed enhanced photocatalytic activity for antibiotic tetracycline hydrochloride (TC-HCl) degradation, and the degradation rate was 3.4 times higher than that of pure g-C3N4 under visible light irradiation. The enhancement of photocatalytic activity could be attributed to the surface plasmon resonance effect of Au and electron-sink function of Pt nanoparticles, which improve the optical absorption property and photogenerated charge carriers separation of g-C3N4, synergistically facilitating the photocatalysis process. Finally, a possible photocatalytic mechanism for degr...

553 citations

Journal ArticleDOI
TL;DR: This work provides a potential effective VLD photocatalyst to disinfect the bacterial cells, even to destruct the biofilm that can provide shelter and substratum for microorganisms and resist to disinfection.
Abstract: Urgent development of effective and low-cost disinfecting technologies is needed to address the problems caused by an outbreak of harmful microorganisms. In this work, we report an effective photocatalytic disinfection of E. coli K-12 by using a AgBr-Ag-Bi(2)WO(6) nanojunction system as a catalyst under visible light (lambda >or= 400 nm) irradiation. The visible-light-driven (VLD) AgBr-Ag-Bi(2)WO(6) nanojunction could completely inactivate 5 x 10(7) cfu mL(-1) E. coli K-12 within 15 min, which was superior to other VLD photocatalysts such as Bi(2)WO(6) superstructure, Ag-Bi(2)WO(6) and AgBr-Ag-TiO(2) composite. Moreover, the photochemical mechanism of bactericidal action for the AgBr-Ag-Bi(2)WO(6) nanojunction was investigated by using different scavengers. It was found that the diffusing hydroxyl radicals generated both by the oxidative pathway and the reductive pathway play an important role in the photocatalytic disinfection. Moreover, direct contact between the AgBr-Ag-Bi(2)WO(6) nanojunction and bacterial cells was not necessary for the photocatalytic disinfection of E. coli K-12. Finally, the photocatalytic destruction of the bacterial cells was directly observed by TEM images and further confirmed by the determination of potassium ion (K(+)) leakage from the killed bacteria. This work provides a potential effective VLD photocatalyst to disinfect the bacterial cells, even to destruct the biofilm that can provide shelter and substratum for microorganisms and resist to disinfection.

553 citations


Network Information
Related Topics (5)
Adsorption
226.4K papers, 5.9M citations
92% related
Nanoparticle
85.9K papers, 2.6M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Catalysis
400.9K papers, 8.7M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202310,115
202219,607
20217,090
20206,542
20196,581