scispace - formally typeset
Search or ask a question
Topic

Photocatalysis

About: Photocatalysis is a research topic. Over the lifetime, 67088 publications have been published within this topic receiving 2145233 citations. The topic is also known as: photocatalyst.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of dopant type, ionic size and its concentration on the crystal structure, electronic property and morphology of doped ZnO with a narrower band gap is reviewed systematically.

509 citations

Journal ArticleDOI
TL;DR: A magnetically separable ZnFe2O4-graphene nanocomposite photocatalyst with different graphene content was prepared by a facile one-step hydrothermal method as discussed by the authors.
Abstract: A magnetically separable ZnFe2O4–graphene nanocomposite photocatalyst with different graphene content was prepared by a facile one-step hydrothermal method. The graphene sheets in this nanocomposite photocatalyst are exfoliated and decorated with ZnFe2O4 nanocrystals. It was found that in the presence of H2O2, the photodegradation rate of methylene blue (MB) was 88% after visible light irradiation for only 5 min and reached up to 99% after irradiation for 90 min. In comparison with pure ZnFe2O4 catalyst, ZnFe2O4–graphene serves a dual function as the catalyst for photoelectrochemical degradation of MB and the generator of a strong oxidant hydroxyl radical (·OH) via photoelectrochemical decomposition of H2O2 under visible light irradiation. ZnFe2O4 nanoparticles themselves have a magnetic property, which makes the ZnFe2O4–graphene composite magnetically separable in a suspension system, and therefore it does not require additional magnetic components as is the usual case.

509 citations

Journal ArticleDOI
Dengrong Sun1, Yanghe Fu1, Wenjun Liu1, Lin Ye1, Dengke Wang1, Lin Yang1, Xianzhi Fu1, Zhaohui Li1 
TL;DR: This study provides a better understanding of photocatalytic CO2 reduction over MOF-based photocATalysts and also demonstrates the great potential of using MOFs as highly stable, molecularly tunable, and recyclable photoc atalysts inCO2 reduction.
Abstract: Metal-organic framework (MOF) NH2 -Uio-66(Zr) exhibits photocatalytic activity for CO2 reduction in the presence of triethanolamine as sacrificial agent under visible-light irradiation. Photoinduced electron transfer from the excited 2-aminoterephthalate (ATA) to Zr oxo clusters in NH2 -Uio-66(Zr) was for the first time revealed by photoluminescence studies. Generation of Zr(III) and its involvement in photocatalytic CO2 reduction was confirmed by ESR analysis. Moreover, NH2 -Uio-66(Zr) with mixed ATA and 2,5-diaminoterephthalate (DTA) ligands was prepared and shown to exhibit higher performance for photocatalytic CO2 reduction due to its enhanced light adsorption and increased adsorption of CO2 . This study provides a better understanding of photocatalytic CO2 reduction over MOF-based photocatalysts and also demonstrates the great potential of using MOFs as highly stable, molecularly tunable, and recyclable photocatalysts in CO2 reduction.

509 citations

Journal ArticleDOI
TL;DR: In this article, a modified sol-gel process using different alkoxide precursors was used to obtain carbon-containing catalysts with large surface areas, capable to photodegrade p-chlorophenol (4CP) with visible light (λ>400nm).
Abstract: Photocatalysts based on titanium dioxide have been prepared by a modified sol–gel process using different alkoxide precursors. Depending on the precursor and the calcination temperature of the gels, carbon-containing catalysts with large surface areas, capable to photodegrade p-chlorophenol (4CP) with visible light (λ>400 nm), have been obtained. Photodegradation and mineralisation were confirmed by HPLC and TOC measurements. The catalysts were characterised by physisorption of argon, elemental analysis, EPR, UV/VIS, X-ray powder diffraction (XRD), FT-IR and high-resolution transmission electron microscopy (HRTEM). A highly condensed, carbonaceous species formed during calcination is responsible for the photosensitisation. When used as a photoelectrode, the appearance of a photocurrent indicated the semiconductor nature of these novel materials. The catalysts exhibit a surprisingly good long-time stability despite of the carbonaceous nature of the sensitising species. It is also shown, that commercially available TiO2 can be photosensitised by impregnation with suitable alcohols followed by pyrolysis.

509 citations


Network Information
Related Topics (5)
Adsorption
226.4K papers, 5.9M citations
92% related
Nanoparticle
85.9K papers, 2.6M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Catalysis
400.9K papers, 8.7M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202310,115
202219,607
20217,090
20206,542
20196,581