scispace - formally typeset
Search or ask a question
Topic

Photocatalysis

About: Photocatalysis is a research topic. Over the lifetime, 67088 publications have been published within this topic receiving 2145233 citations. The topic is also known as: photocatalyst.


Papers
More filters
Journal ArticleDOI
TL;DR: For the first time, the remarkable photocatalytic efficiency of such Fe(III)-based MOFs under visible light illumination (350 up to 850 nm) is shown.
Abstract: Herein, a new group of visible light photocatalysts is described. Iron(III) oxides could be promising visible light photocatalysts because of their small band gap enabling visible light excitation. However, the high electron–hole recombination rate limits the yield of highly oxidizing species. This can be overcome by reducing the particle dimensions. In this study, metal–organic frameworks (MOFs), containing Fe3-μ3-oxo clusters, are proposed as visible light photocatalysts. Their photocatalytic performance is tested and proven via the degradation of Rhodamine 6G in aqueous solution. For the first time, the remarkable photocatalytic efficiency of such Fe(III)-based MOFs under visible light illumination (350 up to 850 nm) is shown.

475 citations

Journal ArticleDOI
TL;DR: F-doped TiO2 powders demonstrated very high visible-light photocatalytic activities for decomposition of both acetaldehyde and trichloroethylene.

475 citations

Journal ArticleDOI
TL;DR: In this article, the effect of incorporation of Si02 on the behavior of a TiO2-based photocatalyst prepared by a sol-gel technique from organometallic precursors is described.
Abstract: The effect of incorporation of Si02 on the behavior of a TiO2-based photocatalyst prepared by a sol-gel technique from organometallic precursors is described. Application of photocatalysts with different TiOd Si02 ratios to the photodecomposition of rhodamine-6G (R-6G) demonstrates that a ratio of 30/70 produces a catalyst about 3 times more active than Degussa P-25 TiO2. Larger amounts of Si02 decrease the activity. The adsorption of R-6G on the different materials and the photodecomposition of preadsorbed R-6G is also described. The studies suggest that photogenerated intermediates are sufficiently mobile to react with R-6G adsorbed on Si02 sites but that adsorption of R-6G on Ti02 is not a prerequisite for reaction.

474 citations

Journal ArticleDOI
TL;DR: In this article, a phosphorus doped porous ultrathin carbon nitride nanosheets (PCN-S) was prepared successfully via the element doping and thermal exfoliation method.
Abstract: Carbon nitride (g-C3N4) has attracted great attention for its wide applications in hydrogen evolution and photocatalytic degradation. In this study, phosphorus doped porous ultrathin carbon nitride nanosheets (PCN-S) were prepared successfully via the element doping and thermal exfoliation method. The prepared PCN-S was characterized by XRD, SEM, TEM, N2-adsorption-desorption measurement, FT-IR, XPS, UV–vis diffuse reflectance spectra, photoluminescence (PL), photocurrent response (I-t) and EIS. The results show that PCN-S owns regular crystal structure of g-C3N4, large specific surface areas and nanosheet structure with lots of in-plane pores on its surface, excellent chemical stability, and broad light response to the whole visible light region, which was attributed to the doping of phosphorus element. Under visible light irradiation, the photocatalytic reduction of Cr(VI) over different samples indicated that the P doping and porous nanosheet structure play an important role for the enhanced performance of PCN-S. The reason was that P element doping can broaden the visible light response region, and large specific surface areas from the porous nanosheet structure can provide quantities of active sites for the photocatalytic reaction. Then the detailed study on the PCN-S for simultaneous photocatalytic reduction of Cr(VI) and oxidation of 2,4-diclorophenol (2,4-DCP) was conducted. The experiments results show that low pH value and enough dissolved oxygen were found to promote Cr(VI) reduction and 2,4-DCP oxidation. The detailed photocatalytic mechanism was proposed. The strategies used in this study could provide new insight into the design of g-C3N4 based materials with high photocatalytic activity, and present potential for the treatment of Cr(VI)/2,4-DCP or other mixed pollutants in wastewater.

473 citations

Journal ArticleDOI
TL;DR: In this paper, reduced graphene oxide (RGO)-CdS nanorod composites were successfully prepared by a one-step microwave-hydrothermal method in an ethanolamine-water solution.
Abstract: Solar-fuel production has attracted considerable attention because of the current demand to find alternative transportation fuels with particular emphasis on those fuels obtained photocatalytically from water and CO2. In this work, reduced graphene oxide (RGO)–CdS nanorod composites were successfully prepared by a one-step microwave-hydrothermal method in an ethanolamine–water solution. These composite samples exhibited a high activity for the photocatalytic reduction of CO2 to CH4, even without a noble metal Pt co-catalyst. The optimized RGO–CdS nanorod composite photocatalyst exhibited a high CH4-production rate of 2.51 μmol h−1 g−1 at an RGO content of 0.5 wt%. This rate exceeded that observed for the pure CdS nanorods by more than 10 times and was better than that observed for an optimized Pt–CdS nanorod composite photocatalyst under the same reaction conditions. This high photocatalytic activity was ascribed to the deposition of CdS nanorods onto the RGO sheets, which act as an electron acceptor and transporter, thus efficiently separating the photogenerated charge carriers. Furthermore, the introduction of RGO can enhance the adsorption and activation of CO2 molecules, which speeds up the photocatalytic reduction of CO2 to CH4. The proposed mechanism for the observed photocatalytic reaction with the RGO–CdS nanorod composite was further confirmed using transient photocurrent response and electrochemical impedance spectra. This work not only demonstrates a facile microwave-assisted hydrothermal method for fabricating highly active RGO–CdS nanorod composite photocatalysts, but also demonstrates the possibility of utilizing of an inexpensive carbon material as a substitute for noble metals in the photocatalytic reduction of CO2.

472 citations


Network Information
Related Topics (5)
Adsorption
226.4K papers, 5.9M citations
92% related
Nanoparticle
85.9K papers, 2.6M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Catalysis
400.9K papers, 8.7M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202310,115
202219,607
20217,090
20206,542
20196,581