scispace - formally typeset
Search or ask a question
Topic

Photocatalysis

About: Photocatalysis is a research topic. Over the lifetime, 67088 publications have been published within this topic receiving 2145233 citations. The topic is also known as: photocatalyst.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the photocatalysis action spectra and transient absorption measurements show that the plasmonic energy is transferred from the metal to the semiconductor via PLASM-induced resonant energy transfer (PIRET) and direct electron transfer (DET) simultaneously, generating electron-hole pairs in semiconductor.
Abstract: Compared to pristine Cu2O nanoparticles (NPs), Ag@Cu2O core-shell NPs exhibit photocatalytic activity over an extended wavelength range because of the presence of localized surface plasmon resonance (LSPR) in the Ag core. The photocatalysis action spectra and transient absorption measurements show that the plasmonic energy is transferred from the metal to the semiconductor via plasmon-induced resonant energy transfer (PIRET) and direct electron transfer (DET) simultaneously, generating electron–hole pairs in the semiconductor. The LSPR band of Ag@Cu2O core-shell NPs shows a red-shift with an increase in the Cu2O shell thickness, extending the light absorption of Ag@Cu2O heterostructures to longer wavelengths. As a result, the photocatalytic activity of the Ag@Cu2O core-shell NPs is varied by modulation of the shell thickness on the nanometer scale. This work has demonstrated that the Ag@Cu2O core-shell heterostructure is an efficient visible-light plasmonic photocatalyst, which allows for tunable light ab...

466 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the application of novel chemistry methods for the fabrication of robust nanostructured titanium oxide (TiO2) photocatalysts, which can be applied in the development of efficient photocATalytic systems for the treatment of water.
Abstract: This study describes the application of novel chemistry methods for the fabrication of robust nanostructured titanium oxide (TiO2) photocatalysts. Such materials can be applied in the development of efficient photocatalytic systems for the treatment of water. Mesoporous photocatalytic TiO2 films and membranes were synthesized via a simple synthesis method that involves dip-coating of appropriate substrates into an organic/inorganic sol composed of isopropanol, acetic acid, titanium tetraisopropoxide, and polyoxyethylenesorbitan monooleate surfactant (Tween 80) followed by calcination of the coating at 500 8C. Controlled hydrolysis and condensation reactions were achieved through in-taking of water molecules released from the esterification reaction of acetic acid with isopropanol. The subsequent stable incorporation of Ti–O–Ti network onto self-assembled surfactants resulted in TiO2 photocatalysts with enhanced structural and catalytic properties. The properties included high surface area (147 m 2 /g) and porosity (46%), narrow pore size distribution ranging from 2 to 8 nm, homogeneity without cracks and pinholes, active anatase crystal phase, and small crystallite size (9 nm). These TiO2 photocatalysts were highly efficient for the destruction of methylene blue and creatinine in water. High water permeability and sharp polyethylene glycol retention of the prepared photocatalytic TiO2/Al2O3 composite membranes evidenced the good structural properties of TiO2 films. In addition, the multi-coating procedure made it possible to effectively control the physical properties of TiO2 layer such as the coating thickness, amount of TiO2, photocatalytic activity, water permeability and organic retention. # 2005 Elsevier B.V. All rights reserved.

465 citations

Journal ArticleDOI
TL;DR: In this article, the microstructural and chemical properties of TiO2, obtained by a sol-gel procedure, were investigated by using X-ray diffraction (XRD) and electron spectroscopy for chemical analysis.

464 citations

Journal ArticleDOI
TL;DR: A review of surface plasmon resonance-mediated photocatalysis can be found in this article, where the authors highlight diverse applications of plasmoric photocatalysts in mineralization of organic pollutants, organic synthesis and water splitting.
Abstract: Harvesting abundant and renewable sunlight in energy production and environmental remediation is an emerging research topic. Indeed, research on solar-driven heterogeneous photocatalysis based on surface plasmon resonance has seen rapid growth and potentially opens a technologically promising avenue that can benefit the sustainable development of global energy and the environment. This review briefly summarizes recent advances in the synthesis and photocatalytic properties of plasmonic composites (e.g., hybrid structures) formed by noble metal (e.g., gold, silver) nanoparticles dispersed on a variety of substrates that are composed of metal oxides, silver halides, graphene oxide, among others. Brief introduction of surface plasmon resonance and the synthesis of noble metal-based composites are given, followed by highlighting diverse applications of plasmonic photocatalysts in mineralization of organic pollutants, organic synthesis and water splitting. Insights into surface plasmon resonance-mediated photocatalysis not only impact the basic science of heterogeneous photocatalysis, but generate new concepts guiding practical technologies such as wastewater treatment, air purification, selective oxidation reactions, selective reduction reactions, and solar-to-hydrogen energy conversion in an energy efficient and environmentally benign approach. This review ends with a summary and perspectives.

464 citations

Journal ArticleDOI
TL;DR: In this paper, a direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 composite was successfully synthesized by one step co-calcination stratage using tungstic acid, melamine and bismuth (III) nitrate pentahydrate as the precursors.
Abstract: Artificial Z-scheme photocatalyst can not only reduce the recombination of photogeneraged electron–holepairs, but also retain prominent redox ability. In this study, direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst was successfully synthesized by one step co-calcination stratage using tungstic acid, melamine and bismuth (III) nitrate pentahydrate as the precursors. Surface, morphological, and structural properties of the resulting materials were comprehensive characterized by XRD, XPS, SEM, TEM, UV–vis diffuse reflection spectroscopy, BET surface areas, photoluminescence and ESR analysis. The WO3/g-C3N4/Bi2O3 composite exhibited superior photocatalytic activities for tetracycline degradation than that of pure g-C3N4, WO3, Bi2O3 and their binary composites under visible light irradiation. The enhanced photocatalytic performance of WO3/g-C3N4/Bi2O3 composite can be ascribed to improved visible light absorption, increased surface area and enhanced separation efficiency of photo-generated electron-hole pairs. In addition, the photocatalyst exhibits high stability and reusability. On the basis of the results, a novel direct solid-state dual Z-scheme photocatalytic mechanism was also proposed.

462 citations


Network Information
Related Topics (5)
Adsorption
226.4K papers, 5.9M citations
92% related
Nanoparticle
85.9K papers, 2.6M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Catalysis
400.9K papers, 8.7M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202310,115
202219,607
20217,090
20206,542
20196,581